Status Report

The Solar wind prevents re-accretion of debris after Mercury’s giant impact

By SpaceRef Editor
February 21, 2020
Filed under , , ,

Christopher Spalding, Fred C. Adams

(Submitted on 18 Feb 2020)

The planet Mercury possesses an anomalously large iron core, and a correspondingly high bulk density. Numerous hypotheses have been proposed in order to explain such a large iron content. A long-standing idea holds that Mercury once possessed a larger silicate mantle which was removed by a giant impact early in the the Solar system’s history. A central problem with this idea has been that material ejected from Mercury is typically re-accreted onto the planet after a short (~Myr) timescale. Here, we show that the primordial Solar wind would have provided sufficient drag upon ejected debris to remove them from Mercury-crossing trajectories before re-impacting the planet’s surface. Specifically, the young Sun likely possessed a stronger wind, fast rotation and strong magnetic field. Depending upon the time of the giant impact, the ram pressure associated with this wind would push particles outward into the Solar system, or inward toward the Sun, on sub-Myr timescales, depending upon the size of ejected debris. Accordingly, the giant impact hypothesis remains a viable pathway toward the removal of planetary mantles, both on Mercury and extrasolar planets, particularly those close to young stars with strong winds.

Comments: 14 pages, 6 Figures, Accepted for publication in The Planetary Science Journal (AAS journals)

Subjects: Earth and Planetary Astrophysics (astro-ph.EP); Solar and Stellar Astrophysics (astro-ph.SR)

Cite as: arXiv:2002.07847 [astro-ph.EP] (or arXiv:2002.07847v1 [astro-ph.EP] for this version)

Submission history

From: Christopher Spalding Dr 

[v1] Tue, 18 Feb 2020 19:47:33 UTC (657 KB)

SpaceRef staff editor.