Status Report

The Primordial Solar wind as a Sculptor of Terrestrial Planet Formation

By SpaceRef Editor
November 28, 2018
Filed under , , ,

Christopher Spalding

(Submitted on 28 Nov 2018)

Our Solar system is almost entirely devoid of material interior to Mercury’s orbit, in sharp contrast to the multiple Earth masses of material commonly residing within the analogous region of extrasolar planetary systems. Recent work has suggested that Jupiter’s orbital migration early in the Solar system’s history fragmented primordial planetary material within the inner Solar System. However, the reason for the absence of subsequent planet formation within 0.4AU remains unsolved. Here, we show that the up debris interior to Mercury’s current orbit is susceptible to outward migration driven by the early Solar wind, enhanced by the Sun’s primordial rapid rotation and strong magnetic field. The ram pressure arising from azimuthal motion of the Solar wind plasma transported ~100m-sized objects and smaller from 0.1AU out to the terrestrial planet-forming zone within the suspected ~30-50,Myr timespan of the Earth’s formation. The mass of material within this size class typically exceeds Mercury, and can rival that of Earth. Consequently, the present-day region of terrestrial planets and the asteroid belt has been supplied by a large mass of material from the innermost, hot Solar system, providing a potential explanation for the evidence of high-temperature alteration within some asteroids and the high iron content of Mercury.

Comments: 7 pages, 5 figures, Accepted to The Astrophysical Journal Letters

Subjects: Earth and Planetary Astrophysics (astro-ph.EP); Solar and Stellar Astrophysics (astro-ph.SR)

Cite as: arXiv:1811.11697 [astro-ph.EP] (or arXiv:1811.11697v1 [astro-ph.EP] for this version)

Submission history

From: Christopher Spalding Dr 

[v1] Wed, 28 Nov 2018 17:35:04 UTC (84 KB)

https://arxiv.org/abs/1811.11697

SpaceRef staff editor.