Status Report

The Impact of a Stealth CME on the Martian Topside Ionosphere

By SpaceRef Editor
February 18, 2021
Filed under , ,

Smitha V. Thampi, C. Krishnaprasad, Govind G. Nampoothiri, Tarun K. Pant

Solar cycle 24 is one of the weakest solar cycles recorded, but surprisingly the declining phase of it had a slow CME which evolved without any low coronal signature and is classified as a stealth CME which was responsible for an intense geomagnetic storm at Earth (Dst = -176 nT). The impact of this space weather event on the terrestrial ionosphere has been reported. However,the propagation of this CME beyond 1 au and the impact of this CME on other planetary environments have not been studied so far. In this paper, we analyse the data from Sun-Earth L1 point as well as from the Martian orbit (near 1.5 au) to understand the characteristics of the stealth CME as observed beyond 1 au. The observations near Earth are using data from the Solar Dynamics Observatory (SDO) and the Advanced Composition Explorer (ACE) satellite located at L1 point whereas those near Mars are from the instruments for plasma and magnetic field measurements on board Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The observations show that the stealth CME has reached 1.5 au after 7 days of its initial observations at the Sun and caused depletion in the nightside topside ionosphere of Mars, as observed during the inbound phase measurements of the Langmuir Probe and Waves (LPW) instrument on board MAVEN. These observations have implications on the ion escape rates from the Martian upper atmosphere.

Comments: Accepted for publication in Monthly Notices of the Royal Astronomical Society (2021)

Subjects: Earth and Planetary Astrophysics (astro-ph.EP); Solar and Stellar Astrophysics (astro-ph.SR); Space Physics (physics.space-ph)

Cite as: arXiv:2102.09304 [astro-ph.EP] (or arXiv:2102.09304v1 [astro-ph.EP] for this version)

Submission history

From: C. Krishnaprasad 

[v1] Thu, 18 Feb 2021 12:26:18 UTC (1,793 KB)

https://arxiv.org/abs/2102.09304

SpaceRef staff editor.