Status Report

The APOGEE Spectroscopic Survey of Kepler Planet Hosts: Feasibility, Efficiency, and First Results

By SpaceRef Editor
February 24, 2015
Filed under , , ,
The APOGEE Spectroscopic Survey of Kepler Planet Hosts: Feasibility, Efficiency, and First Results

Scott W. Fleming, Suvrath Mahadevan, Rohit Deshpande, Chad F. Bender, Ryan C. Terrien, Robert C. Marchwinski, Ji Wang, Arpita Roy, Keivan G. Stassun, Carlos Allende Prieto, Katia Cunha, Verne V. Smith, Eric Agol, Hasan Ak, Fabienne A. Bastien, Dmitry Bizyaev, Justin R. Crepp, Eric B. Ford, Peter M. Frinchaboy, Domingo Anbal Garca-Hernndez, Ana Elia Garca Prez, B. Scott Gaudi, Jian Ge, Fred Hearty, Bo Ma, Steve R. Majewski, Szabolcs Mszros, David L. Nidever, Kaike Pan, Joshua Pepper, Marc H. Pinsonneault, Ricardo P. Schiavon, Donald P. Schneider, John C. Wilson, Olga Zamora, Gail Zasowski

(Submitted on 17 Feb 2015)

The Kepler mission has yielded a large number of planet candidates from among the Kepler Objects of Interest (KOIs), but spectroscopic follow-up of these relatively faint stars is a serious bottleneck in confirming and characterizing these systems. We present motivation and survey design for an ongoing project with the SDSS-III multiplexed APOGEE near-infrared spectrograph to monitor hundreds of KOI host stars. We report some of our first results using representative targets from our sample, which include current planet candidates that we find to be false positives, as well as candidates listed as false positives that we do not find to be spectroscopic binaries. With this survey, KOI hosts are observed over ~20 epochs at a radial velocity precision of 100-200 m/s. These observations can easily identify a majority of false positives caused by physically-associated stellar or substellar binaries, and in many cases, fully characterize their orbits.

We demonstrate that APOGEE is capable of achieving RV precision at the 100-200 m/s level over long time baselines, and that APOGEE’s multiplexing capability makes it substantially more efficient at identifying false positives due to binaries than other single-object spectrographs working to confirm KOIs as planets. These APOGEE RVs enable ancillary science projects, such as studies of fundamental stellar astrophysics or intrinsically rare substellar companions. The coadded APOGEE spectra can be used to derive stellar properties (T_eff, log(g)) and chemical abundances of over a dozen elements to probe correlations of planet properties with individual elemental abundances.

Comments: Accepted in AJ, 17 pages, 13 figures, 4 tables

Subjects: Earth and Planetary Astrophysics (astro-ph.EP); Solar and Stellar Astrophysics (astro-ph.SR)

Cite as: arXiv:1502.05035 [astro-ph.EP] (or arXiv:1502.05035v1 [astro-ph.EP] for this version)

Submission history

From: Scott Fleming 

[v1] Tue, 17 Feb 2015 20:59:18 GMT (1038kb)

SpaceRef staff editor.