Terrestrial Analogs to Mars: (Part 2) Planetary Decadal Study Community White Paper Solar System Exploration Survey, 2003-2013
Planetary Decadal Study Community White Paper
Solar System Exploration Survey, 2003-2013
SUBJECT AREA: Mars
DRAFT DATE: 12/07/01
Terrestrial Analogs to Mars
MAINTAINING CAPABILITIES FOR THE FUTURE.
1. Continue expanded field workshops and support of projects such as the Houghton Mars Project. Change sites/processes as Mars results come in. Continue building human observational experience and insight by involving astronaut researchers.
2. Continue coordinated deployments of bread-board instruments or instruments similar to those intended for Mars on aircraft, Earth-orbiting spacecraft, and the ground. Develop relationships between NASA offices and other national and international agencies for support of these multi-disciplinary activities. For example, NASA Earth Science may be interested in ice studies or sounding for deep soil moisture; NSF is interested in polar studies as is CRREL. International interest in martian analogs (e.g. CNES, ESA, ASI, etc.) could help support non-US sites in, for example, Africa, Tibet, Atacama Desert, Australia, Iceland, Russia, Canada.
3. Continue support of data archive of terrestrial analog data. Review periodically based on latest Mars results. As Mars materials become better understood, define new Mars analog materials for laboratory study.
4. Establish a few prime sites for continuing study, human training, Education and Public Outreach, etc. (see below)
OTHER
1. Human exploration.
Mars analog studies and geological field training exercises will be crucial in the manned exploration of Mars because of its rich and complex geological history (perhaps even biological history). This will present new and exciting challenges to the human exploration of both the surface and subsurface of Mars. At analog sites, astronauts will be able to carry out the proper field investigations for correct geological context of the landing site as well as the surrounding environs, conduct precision landings, maximize surface mobility, and also perform intelligent sample acquisition and interpretation (Rice, 2000; Dickerson et al., 2000).
At JSC, Shuttle crews are briefed in observing/documenting/interpreting features on Earth that may be analogues for those on Mars. As a result, a growing collection of astronaut-acquired photography is being built, focused on diagnostic attributes of terrestrial sites (e.g., Channeled Scablands) for rigorous comparison with MOC and future images of Mars. An outgrowth of early efforts was an online education/outreach publication produced in collaboration with planetary scientists at JSC and LPI (Willis et al., 2000).
On Devon Island, a number of studies are currently underway under the auspices of the NASA Haughton-Mars Project to develop some of the technologies, strategies and human factors experience that will help plan the future exploration of Mars and other planets by robots and humans (www.marsonearth.org). The HMP is established as an international interdisciplinary field research project managed for NASA by the private SETI Institute, thus offering an opportunity at the same time to explore government-private partnerships in extracting the scientific and technological potential of Mars analog research.
2. Education and Public Outreach.
For this application, the visual aspect of the analog site and the logistics and accessibility are the most important factors. The more accessible sites especially could become “standard” sets for filmed news stories and documentaries. Demonstrations of rovers are always popular- more so in a Mars-like setting. The public can be encouraged to visit some of the sites, yielding an opportunity to describe how the site is like Mars and how it isn’t. National Monuments and Parks such as Death Valley and Mojave Desert, may be interested in helping to support this. Hawaii Volcanoes National Park already hosts annual workshops for teachers and school students who use the volcanic terrain as a planetary analog. Planning for manned and un-manned surface activities on the planets (including Mars) are included in the program.
References
Abdelsalam, M. G., C.A. Robinson, F. El-Baz and R.J. Stern, 2000, Applications of Orbital Imaging Radar for Geologic Studies in Arid Regions: The Saharan Testimony, PE&RS, v. 66, No. 6, p. 717-726.
Abdelsalam, M.G., R.J. Stern, 1996, Mapping Precambrian structures in the Sahara Desert with SIR-C/X-SAR radar: The Neoproterozoic Keraf Suture, NE Sudan, J. Geophys. Res., v. 101, p. 23063-23076.
Abrams, M.J., E. Abbott, A. Kahle, 1991, Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows, J. Geophys. Res., v. 96, p. 475-484.
Agrinier et al., 2001, Fast back-reactions of shock-released CO2 from carbonates: An experimental approach, Geochim. Cosmochim. Acta, v. 65, p.2615-2632.
Allen, C. C., Westall, F., Schelble, R. 2001. Importance of a Martian hematite site for Astrobiology, Astrobiology, v. 1, p. 111-123.
Anderson, F.S., M.H. Hecht, F.D. Carsey, P.G. Conrad, W.F. Zimmerman, L.C. French, H. Engelhardt, 2001, In-Situ ice core analysis of Longyearbreen Glacier using a cryobot: Preparation for the northern polar cap of Mars, abs. Eos Trans. AGU, v. 82.
Arvidson, R.E., M.K. Shepard, E.A. Guinness, S.B. Petroy, J.J. Plaut, D.L. Evans, T.G. Farr, R. Greeley, N. Lancaster, L.R. Gaddis, 1993, Characterization of lava-flow degradation in the Pisgah and Cima volcanic fields, California, using Landsat Thematic Mapper and AIRSAR data, Geol. Soc. Amer. Bull., v. 105, p. 175-188.
Baker, V. R., 1981, Australian analogs to geomorphic features on Mars: Reports of the
Planetary Geology Program – 1981, NASA Tech. Memo. 84211, p. 329-330.
Baker, V. R. and D. Nummedal, 1978, The Channeled Scabland, NASA Planetary Geology Program, Washington, D.C.
Baldridge, A.M., J.D. Farmer, J.E. Moersch, 2001, Remote sensing of terrestrial analogs for evaporite basins on Mars: Analysis of ground truth, abs. Eos Trans. AGU, v. 82.
Behrendt, J.C., D. D. Blankenship, D. L. Morse, and R. E. Bell, 2001, Removal of subglacially erupted volcanic edifices beneath the divide of the West Antarctic Ice Sheet interpreted from aeromagnetic and radar ice sounding surveys, in J. A. Gamble, D. N. B. Skinner, S. Henrys, and R. Lynch, eds., Proceedings Volume 8th International Symposium on Antarctic Earth Sciences, Wellington, p. (in press).
Behrendt, J.C., D. D. Blankenship, C. A.Finn, R. E. Bell, R.E. Sweeney, S. M. Hodge, and J. M. Brozena, 1994, CASERTZ aeromagnetic data reveal late Cenozoic flood basalts in the West Antarctic rift system, Geology, v. 22, p. 527-530.
Behrendt, J.C., Finn, C.A., Blankenship, D.D., and Bell, R.E., 1998, Aeromagnetic evidence for a volcanic caldera complex beneath the divide of the West Antarctic Ice Sheet, Geophysical Research Letters, v. 25, p. 4385-4388.
Berthelier J.-J, R. Ney, F. Costard, M. Hamelin, A. Meyer, B. Martinat, A. Reineix, Th. Hansen, M. Bano, W. Kofman, F. Lefeuvre, Ph. Paillou, 2000, The GPR Experiment on Netlander, Planetary and Space Science, v. 48, p. 1161-1180.
Blankenship, D.D., R.E. Bell, S.M. Hodge, J.M. Brozena, J.C. Behrendt, and C.A. Finn, 1993, Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability, Nature, 361, p. 526-529.
Blankenship, D.D., D.L. Morse, C.A.Finn, R.E. Bell, , M.E. Peters, S. E. Kempf, S. M. Hodge, M. Studinger, J. C. Behrendt, and J. M. Brozena, 2001, Geologic controls on the initiation of rapid basal motion for West Antarctic ice streams: A geophysical perspective including new airborne radar sounding and laser altimetry results, in R. B. Alley, and R. A. Bindschadler, eds., The West Antarctic Ice Sheet: Behavior and Environment, v. 77, Antarctic Research Series, Washington, D.C., American Geophysical Union, p. 105-121.
Bourke and Zimbelman, 2001, (Craddock) ***
Chang S.B.R. and J. L. Kirshvink, 1989, Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization, Annual Rev. Earth Planet. Sci. v. 117, p. 169-195
Chapman, M. G., 2001, Layered, massive, and thin sediments on Mars: Possible Late Noachian to Late Amazonian tephra?, in Chapman, M. G. and Smellie, J. L., editors, Volcano/Ice Interactions on Earth and Mars: London, The Geological Society, special volume, in press.
Chapman, M., and others, 2000, Volcano-ice interactions on Earth and Mars, Reykjavik, Iceland, http://wwwflag.wr.usgs.gov/USGSFlag/Land/IcelandMeeting.
Clifford, S., 2000, The Second International Conference on Mars Polar Science and Exploration, Iceland, http://www.lpi.usra.edu/meetings/polar2000
Cockell, C. S., and P. Lee 2001. The biology of terrestrial impact craters: A review. Biological Reviews. In press.
Cockell, C. S., P. Lee, A. C. Schuerger, L. Hidalgo, J. A. Jones, and M. D. Stokes 2001. Microbiology and vegetation of micro-oases and polar desert, Haughton impact crater, Devon Island, Canada. Arctic Antarct. Alpine Res. 22, 306-318.
Craddock, R.A., T. A. Maxwell, and A. D. Howard, 1997, Crater morphometry and modification in the Sinus Sabaeus and margaritifer Sinus regions of Mars, J. Geophys. Res., v. 102, p. 13,321-13,340.
Dann J.C., A. H. Holzheid, T. L. Grove, and H. Y. McSween, Jr., 2001, Phase equilibrium of the Shergotty meteorite, Constraints on pre-eruptive H2O contents of martian magmas and fractional crystallization under hydrous conditions. Meteorit. Planet. Sci. v. 36, p.793-806.
Dickerson, P. W., Muehlberger, W.R., and Bauer P.W., 2000, Astronaut training in field geophysical methods, Albuquerque, AIAA Space 2000 conference proceedings.
Durham W. B. et al.,1999a, Abstracts, Intl. Workshop on the Martian Ice Caps, Copenhagen.
Durham W. B. et al. 1999b, Geophys. Res. Lett. v. 26, p. 3493-3496.
Durham, W.B., S. H. Kirby, and L. A. Stern, 2000, Comparative Rheologies of Solid H2O, CO2, and CO2 Clathrate Hydrate. Second International Conference on Mars Polar Science and Exploration, Reykjavik, Iceland.
Edgett, K.E., J.W. Rice, Jr., and V.R. Baker (ed. by): Field trips accompanying the Mars Pathfinder Landing Site II workshop, Channeled Scabland and Lake Missoula break-out areas in Washington and Idaho, Lunar and Planetary Institute Tech. Rept., 95-01, p. 63.
El-Baz, F. and T. A. Maxwell, Desert Landforms of Southwest Egypt: A Basis for Comparison with Mars, NASA CR-3611, Washington, D.C., 1982.
El-Baz, F. C.A. Robinson, M.M. Mainguet, M. Said, M. Nabih, I.H. Himida, H.A. El-El-Etr, 2001, Distribution and morphology of palaeo-channels in southeastern Egypt and northwestern Sudan, Palaeoecology of Africa (Klaus Heine, editor), v 27, p. 239-258.
Evans, D.E., C. Weitz, 1999, Workshop on the weathering of basalts on Earth and Mars, ***
Evans, C.E., 2001, Astronauts photograph Mt. Pinatubo: NASA, Earth Observatory, June 15, 2001, http://earthobservatory.nasa.gov/Study/AstronautPinatubo/
Farr, T.G., 1992, Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California, J. Geophys. Res., v. 97, p. 15171-15179.
Farr, T.G. and J.B. Adams, 1984, Rock coatings in Hawaii, Geological Society of America Bulletin, v. 95, p. 1077-1083.
Foessel, A., and P. Lee 2001. Ground Penetrating Radar deployment in Mars-like environment. ISAIRAS Conf., 2001.
Fredriksson, K., A. Dube, D. J. Milton, and M. S. Balasundaram, 1973, Lonar Lake, India: An impact crater in basalt, Sci. v. 180, p. 862-864.
Friedman Lentz R.C., G. J. Taylor, and A. H. Treiman , 1999, Formation of a martian pyroxenite: A comparative study of the nakhlite meteorites and Theo’s Flow, Meteorit. Planet. Sci. v. 34, p. 919-932.
Fudali, R.F., 1973, Roter Kamm, Evidence for an impact origin, Meteoritics, v. 8, p. 245-
257.
Glass, B. J. and P. Lee, 2001, Airborne geomagnetic investigations at the Haughton Impact Structure, Devon Island, Nunavut, Canada, Lunar Planet. Sci., XXXII, Abstract #2155.
Golombek, M. P., K. S. Edgett, and J. W. Rice, 1995, Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Valles Region and Field Trips in the Channeled Scabland, Washington, LPI Tech. Rpt. No. 95-01, Lunar and Planetary Institute, Houston, TX.
Gooding J.L., S. J. Wentworth and M. E. Zolensky, 1991, Aqueous alteration of the Nakhla meteorite. Meteoritics v. 26, p. 135-143.
Grant, J.A., Koeberl, C., Reimold, W.U., Schultz, P.H., Brandt, D., 1997, Degradation history of the Roter Kamm impact crater, Namibia: J. Geophys. Res. v. 102, p. 16,327-16,388.
Grant, J.A., and Schultz, P.H., 1994, Erosion of ejecta at Meteor Crater: Constraints from ground penetrating radar, in GPR ’94: Proceedings of the Fifth International Conference on Ground Penetrating Radar, June 12-16, 1994, University of Waterloo, Kitchener, Ontario, Canada, p. 789-803.
Grant, J.A. 1990, Evaluating the Evolution of Process Specific Degradation Signatures Around Impact Craters: Int. J. Impact Engineering, v. 23, p. 331-340.
Grasby, S. E., Allen, C. C., Longazo, T., Lisle, J. T. 2001, Abstract, Geological Society America, Boston, November 1-10, 2001, p. A451
Greeley, R., 2001, Science Planning for Exploring Mars: part 2, Scientific goals, objectives, investigations, and Priorities, JPL Pub. 01-7.
Greeley, R., 1974, Hawaiian Planetology Conference, NASA TMX 62362, Washington, D.C.
Greeley, R. and J. S. King, 1977, Volcanism of the Eastern Snake River Plain, Idaho, A Comparative Planetary Geology Guidebook, NASA Office of Planetary Geology, Washington, DC.
Greeley, R., M. B. Womer, R. P. Papson, and P. D. Spudis, 1978, Aeolian Features of Southern California, A Comparative Planetary Geology Field Guide, NASA Office of Planetary Geology, Washington, D.C.
Grieve, R.A.F., C. A. Wood, J. B. Garvin, G. McLaughlin, J. F McHone, Jr., 1988, Astronaut’s guide to terrestrial impact craters. LPI Technical Report Number 88-03, Houston, Texas, p. 89.
Hamilton V.E., M. B. Wyatt, H. Y. McSween, Jr., P. R. Christensen, 2001, Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: Application to martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer. JGR, v. 106, p. 14733-14746.
Heggy, E.., Ph. Paillou, G. Ruffié, J.-M. Malézieux, F. Costard, G. Grandjean, 2001, On water detection in the Martian subsurface using sounding Radar, Icarus, (accepted).
Holt, J.W., 2001, Airborne Surveys Conducted by SOAR for Geologic Studies in Antarctica, 1998-2001, Eos Trans. AGU, v. 82, p. 20.
Hon, K., J. Kauahikaua, R, Denlinger, and K. Mackay, 1994, Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active alva flows on Kialuea Volcano, Hawaii, Geol. Soc. Am. Bul., v. 106, p. 351-370.
Horz, F., 1982, Ejecta of the Ries Crater, Germany, GSA Special Paper 190.
Howard, A.D., J. Moore, J. Rice, 2001, Field trip and workshop on the Martian Highlands and Mojave Desert analogs, http://www.lpi.usra.edu/meetings/martianhighlands2001.
Howard, A. D., R. C. Kochel, and H. E. Holt, 1988, Sapping Features of the Colorado Plateau, A Comparative Planetary Geology Field Guide, NASA SP-491, Washington, D.C.
Kapitsa, A.P., J. K. Ridley, G. de Q. Robin, M. J. Siegert, and I. A. Zotikov, 1996, A Large Deep Freshwater Lake Beneath the Ice of Central East Antarctica, Nature, v. 381, p. 684-686.
Kargel, J. S., J. Moore, and T. Parker, 1993, Workshop on the Martian Northern Plains, Sedimentological, Periglacial, and Paleoclimatic Evolution, LPI Tech. Rpt. No. 93-04, Lunar and Planetary Institute, Houston, TX.
Keszthelyi, L, A. S. McEwen, Th. Thordarson, 2000, Terrestrial analogs and thermal models for Martian flood lavas, J. Geophys. Res., v. 105, p. 15027-15049.
Laity, J. E. and D. C. Pieri, 1980, Sapping processes in tributary valley systems, NASA Tech. Memo 81776, p. 271-273,
Lanagan, P.D., A. S. McEwen, L. P. Keszthelyi, Th. Thordarson, 2001, Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times, Geophys. Res. Lett., v.28, p. 2365-2367.
Larsen, J. and D. Dahl-Jensen, 2000, Interior Temperatures of the Northern Polar Cap on Mars, Icarus, v. 144, p. 256-462.
Lee, P., C. S. Cockell, M. M. Marinova, C. P. McKay, and J. W. Rice, Jr. 2001. Snow and Ice melt slope flow features on Devon Island, Nunavut, Arctic Canada, as possible analogs for recent slope flow features on Mars. Lunar Planet. Sci. Conf. XXXII, Mar, 2001.
Lee, P. 2000. Selective fluvial erosion on Mars: Glacial selective linear erosion on Devon Island, Nunavut, Arctic Canada, as a possible analog. Lunar & Planet. Sci. Conf. XXXI, Mar, 2000.
Lee, P., and J. W. Rice, Jr. 1999. Small valley networks on Mars: The glacial meltwater channel networks of Devon Island, Nunavut Territory, Arctic Canada, as possible analogs. 5th Mars Conference, Jul 1999.
Lee, P., J. W. Rice, Jr., T. E. Bunch, R. A. F. Grieve, C. P. McKay, J. W. Schutt, and A. P. Zent 1999. Possible analogs for small valleys on Mars at the Haughton impact crater site, Devon Island, Canadian High Arctic. Lunar Planet. Sci. Conf. XXX., Mar 99.
Lee, P., T. E. Bunch, N. Cabrol, C. S. Cockell, R. A. F. Grieve, C. P. McKay, J. W. Rice, Jr., J. W. Schutt, and A. P. Zent 1998. Haughton-Mars 97 – I: Overview of observations at the Haughton impact crater, a unique Mars analog site in the Canadian High Arctic. Lunar Planet. Sci. Conf. XXIX, Mar 98, 1973-1974.
Lee, P. 1997. A unique Mars/Early Mars analog on Earth: The Haughton impact structure, Devon Island, Canadian Arctic. In Conf. on Early Mars: Geologic and hydrologic evolution, physical and chemical environments, and the implications for life. LPI Contrib. No. 916, 50.
Lee, P. 1993. Briny lakes on early Mars? Terrestrial intracrater playas and martian candidates. LPI Tech. Rep. 93-03, Part 1, 17.
Lentz R.C.F., H. Y. McSween H.Y. Jr., J. G. Ryan and L. R. Riciputi, 2001, Water in martian magmas, Clues from light lithophile elements in shergottite and nakhlite pyroxenes, Geochim. Cosmochim. Acta 65, (in press).
Leshin L. A., 2000, Insights into martian water reservoirs from analysis of martian meteorite QUE94201. GRL v. 27 (14), p. 2017-2020.
McCauley, J.F., Breed, C.S., Schaber, G.G., McHugh, W.P., Issawi, B., Haynes, C.V., Grolier, M.J. and Kilani, A.E., 1986, Paleodrainage of the Eastern Sahara – the radar rivers revisited, IEEE Trans. Geosci. Remote Sens., v. 24, p. 624-648.
Macdonald, G. A, 1953, Pahoehoe, aa, and block lava. Am. J. Sci., v. 251, p. 169-191.
McEwen, A., D. Burr, J. Hardardottir, A. Hoskuldsson, L. Keszthelyi, P. Lanagan, A. Snorrason, T. Thordarson, 2001, Icelandic analogs for volcanic and fluvial processes on Mars, abs. Eos Trans. AGU, v. 82.
McHone, J.F, R. Greeley, K.K. Williams, D.G. Blumberg, and R.O. Kuzmin 2002, Space Shuttle observations of terrestrial impact structures using SIR-C and X-SAR radars, accepted by Meteoritics and Planetary Sciences.
McSween , H.Y., Jr., T. L. Grove, R.C.F. Lentz, J. C. Dann, A. H. Holzheid, L. R. Riciputi, J. G. Ryan, 2001, Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature v. 204, p. 487-490.
Martinez et al., 1994, A SEM-TEM and stable isotope study of carbonates from the Haughton impact structure, Canada, EPSL v. 121, p. 559-574.
Masaitis, V. L. ,1976, Astroblemes in the USSR. Intern. Geol. Rev.,v. 18, p. 1249-1258.
Mege, D. and S. P. Reidel, 2001, A method for estimating 2D wrinkle ridge strain from application of fault displacements scaling to the Yakima folds, Washington, Geophysical Research Letters, v. 28, p. 3545-3548.
Mege, D. and R. E. Ernst, 2001, Contractional effects of mantle plumes on Earth, Mars, and Venus: in R. E. Ernst, and K. L. Buchan, eds., Mantle Plumes: Their Identification Through Time, Boulder, Colorado, Geological Society of America Special Paper, v. 352, p. 103-140.
Milton, D. J., 1968, Structural Geology of the Henbury Meteorite Craters Northern Territory, Australia, U.S. Geological Survey Professional Paper 599-c, p. 17.
Moersch, J. E, J. Farmer, and A. Baldridge, 2001, Remote Sensing of Evaporite Minerals in Badwater Basin, Death Valley, at Varying Spatial Scales and in Different Spectral Regions, in Howard et al., 2001.
Morris, P.A., S.J. Wentworth, K. Thomas-Keprta, J.L. Lisle, C.C. Allen, D.S. McKay, 2000, Dead Sea microbes, Fossilization and potential biomarkers, abs. Geol. Soc. Amer., Reno, NV.
Morse, D.L., E. D. Waddington, and E. J. Steig, E.J., 1998, Ice Age Storm Trajectories Inferred from Radar Stratigraphy at Taylor Dome, Antarctica, Geophysical Research Letters, v. 25 (17), p. 3383-3386.
Morse, D.L., D.D. Blankenship, E D. Waddington, and T.A. Neumann, 2001, Candidate Sites for Deep Ice Coring in West Antarctica: Results from Aerogeophysical Surveys and Thermo-kinematic Modeling, Annals of Glaciology, v. 35, (in press).
Ori, G.G., G. Komatsu, L. Marinangeli, ed., 2001, Field trip guidebook for Workshop on Exploring Mars Surface and its terrestrial analogue, p. 95, http://irsps.sci.unich.it/education/tunisia
Osinski, G.R., J.G. Spray, P. Lee, 2001, Impact-induced hydrothermal activity within the Haughton impact structure, Arctic Canada: Generation of a transient, warm, wet oasis, Meteoritics & Planetary Science, v. 36, p. 731-745.
Oswald, G.K.A., and Robin, G. de Q., 1973, Lakes Beneath the Antarctic Ice Sheet, Nature, v. 245 (5423), p. 251-254.
Paillou, Ph., G. Grandjean, J.-M. Malézieux, G. Ruffié, E. Heggy, D. Piponnier, P. Dubois, J. Achache, 2001, Performances of Ground Penetrating Radars in Arid Volcanic Regions: Consequences for Mars Subsurface Exploration, Geophysical Research Letters, v. 28, p. 911-914.
Peters, M.E., D. D. Blankenship, D. L. Morse, 2001, A New Radar Sounding Method for Improving the Characterization of Subglacial Interfaces Applied to Ice Streams B and C, West Antarctica, Journal of Glaciology, (in press).
Peterson, D. W. and R. I. Tilling, 1980, Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii, Field observations and key factors, J. Volcanol. Geotherm. Res., v. 7, p. 271-293.
Rhodes, J.M, and J. P. Lockwood (editors) Mauna Loa Revealed: Structure, Composition, History, and Hazards, AGU Geophysical Monograph, v. 92, p. 348.
Rice, J R. Jr., 2000, J. E. Concepts and Approaches for Mars Exploration, 2000, Houston, Texas
Rice, J.W. Jr, 2001, High Latitude Terrestrial Lacustrine and Fluvial Field Analogs for the Martian Highlands in Howard et al.,2001.
Rice, J.W. Jr., A. J. Russell, F. S. Tweed, Ó. Knudsen, M. J. Roberts, P. M. Marren R. I. Waller, E. L. Rushmer, H. Fay, and T. D. Harris, 2000, Field Investigations of Icelandic Jökulhlaups as an Analog to Floods on Mars, Second International Conference on Mars Polar Science and Exploration, Reykjavik, Iceland.
Robertson, P.B., 1988, The Haughton impact structure, Devon Island, Canada, Setting and history of investigations, Meteoritics, v. 23, p. 181-184.
Robinson, C.A., F. El-Baz and V. Singhroy, 1999, Subsurface Imaging By Radarsat, Comparison with Landsat TM Data and Implications to Ground Water in the Selima Area, Northwestern Sudan, Canadian Journal of Remote Sensing, v. 25, (3), p. 268-277.
Robinson, C.A., F. El-Baz, M. Ozdogan, M. Ledwith, D. Blanco, S. Oakley, and J. Inzana, 2000, Use of Radar Data to Delineate Palaeodrainage Flow Directions in the Selima Sand Sheet, Eastern Sahara, PE&RS, v. 66, (6) p. 745-753
Roddy, D J., 1978, Pre-impact geologic conditions, physical properties, energy calculations, meteorite and initial crater dimensions and orientations of joints, faults, and walls at Meteor Crater, Arizona: Proc. Lunar and Planet. Sci. Conf., v. 9, p. 3891-3930.
Schaber, G., J.F. McCauley, C. S. Breed, G. R. Olhoeft, 1986, Shuttle Imaging Radar, Physical controls on signal penetration and subsurface scattering in the Eastern Sahara, IEEE Transactions on Geoscience and Remote Sensing, v. GE-24, (4) p. 603-623.
Schaber, G.G., McCauley, J.F. and Breed, C.S., 1997. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt, Remote Sensing and Environment, v, 59, p. 337-363.
Self, S., L. Keszthelyi, and Th. Thordarson, 1998, The importance of pahoehoe. Annu. Rev. Earth. Planet. Sci., v. 26, p. 81-110.
Sharma K, L. Keszthelyi, C. Thornber, S. Self , 2000, Variations in the cooling, crystallization textures, and glass chemistry during emplacement of Kilauea pahoehoe lobes, as constrained by in situ field experiments. GSA Annu. Meeting, Online Abstracts.
Siegert, M J., J.A. Dowdeswell, M. R. Gorman, and N. F. McIntyre, 1996, An Inventory of Antarctic Sub-glacial Lakes, Antarctic Science, v. 8 (31), p. 281-286.
Stern, R.J. and Abdelsalam, M.G., 1996. The origin of the Great Bend of the Nile from SIR-C/X-SAR Imagery, Science, v. 274, p. 1696-1698.
Stoker, C.R., N. Cabrol, T. Roush, J. Moersch, et al., 2001, The 1999 Marsokhod Rover Mission Simulation at Silver Lake California: Mission Overview, Data Sets, and Summary of Results J. Geophys. Res., v. 106, p. 7639-7663.
Swindle T.D., J.A. Grier, B. Li, E.D. Olsen, D.J. Lindstrom and A.H. Treiman, 1997, K-Ar ages for the near-surface liquid water on Mars in the last few hundred million years. (abs) Lunar and Planet. Sci. XXVIII, p. 1403-1404.
Thordarson, Th., and Self, S., 1993, The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783-1785, Bull. Volcanol., v. 55, p. 233-263.
Thorarinsson, S., 1953, The Crater Groups in Iceland, Bull. Volcanol., v. 14, p. 3-44.
Treiman A.H., 1987, Geology of the nakhlite meteorites, Cumulate rocks from flows and shallow intrusions (abs.) Lunar Planet. Sci. v. 18, p. 1022-1023.
Wadhwa, M., 2001, Redox state of Mars’ upper mantle and crust from Eu anomalies in Shergottite pyroxenes. Sci. v. 291, p. 1527-1530.
Wall, S.D., T. G. Farr, J.-P. Muller, P. Lewis and F.W. Leberl, 1991, Measurement of surface microtopography, Photogramm. Eng. Rem. Sens., v. 57, p. 1075-1078.
Watters, T. R. and M. P. Golombek, 1989, MEVTV Workshop on Tectonic Features on Mars, LPI Tech. Rpt. No. 89-06, Lunar and Planetary Institute, Houston, TX.
Wentworth, S.J., P. A. Morris, 2001, The geology, paleontology, and biology of evaporite and near-evaporite system in both terrestrial and extraterrestrial environments, Topical Session 27, Geological Society of America, Boston, November 1-10, 2001.
Westall, 2001 ***
Williams, K.K. and R. Greeley 2001, Radar attenuation by sand: Laboratory measurements of radar transmission, IEEE Trans. Geoscience Remote Sensing, v. 39, p. 2521-2526.
Williams, K.K. and R. Greeley 2001, Laboratory measurements of radar transmission through dust with implications for radar imaging on Mars, In Lunar and Planetary Science XXXII, Abstract #1264, Lunar and Planetary Institute, Houston (CD-ROM).
Willis, K., P. W. Dickerson, B. H. McRay, 2000, Canyons, Craters and Drifting Dunes – Terrestrial Analogues on Earth’s Moon and Mars, JSC, http://eol.jsc.nasa.gov/newsletter/planetary/sld001.htm.
World Crater Inventory, http://www.unb.ca/passc/inventory/
Wyatt M. B., V. E. Hamilton, H. Y. McSween Jr., P. R. Christensen, and L. A. Taylor, 2001, Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies. JGR, v. 10, p. 14711-14732.
Zuber, M.T., and 20 colleagues ,1998, Observations of the north polar region of Mars from the Mars Orbiter Laser Altimeter, Science, v. 282, p. 2053-2060.
Contributors:
Tom G. Farr (Jet Propulsion Laboratory)
- Steve Arcone (Cold Regions Research and Engineering Laboratory)
- Ray Arvidson (Washington University)
- Vic Baker (University of Arizona)
- Nadine Barlow (University of Central Florida)
- David Beaty (Jet Propulsion Laboratory)
- Mary Sue Bell (Johnson Space Center)
- Donald Blankenship (University of Texas Institute for Geophysics)
- Nathan Bridges (Jet Propulsion Laboratory)
- Geoff Briggs (Ames Research Center)
- Mark Bulmer (JCET University of Maryland Baltimore County)
- Frank Carsey (Jet Propulsion Laboratory)
- Steve Clifford (Lunar and Planetary Institute)
- Bob Craddock (National Air and Space Museum)
- Patricia W. Dickerson (Johnson Space Center)
- Natalia Duxbury (Jet Propulsion Laboratory)
- Gillian Galford (Washington University)
- Jim Garvin (NASA Headquarters)
- John Grant (National Air and Space Museum)
- Jacklyn R Green (Jet Propulsion Laboratory)
- Tracy K.P. Gregg (University at Buffalo)
- Ed Guinness (Washington University)
- Vicki Hansen (Southern Methodist University)
- Michael H Hecht (Jet Propulsion Laboratory)
- John Holt (University of Texas Institute for Geophysics)
- Alan Howard (University of Virginia)
- Laszlo Keszthelyi (University of Arizona)
- Pascal Lee (SETI Institute)
- Peter Lanagan (University of Arizona)
- Rachel Lentz (University of Tennessee)
- David Leverington (National Air and Space Museum)
- Lucia Marinangeli (International Research School of Planetary Sciences)
- Jeffrey E. Moersch (University of Tennessee)
- Penny Morris-Smith (Johnson Space Center)
- Peter Mouginis-Mark (University of Hawaii)
- Gary Olhoeft (Colorado School Mines)
- Gian G. Ori (International Research School of Planetary Sciences)
- Philippe Paillou (University of Bordeaux)
- James Reilly (Johnson Space Center)
- Jim Rice (Arizona State University)
- Cordula Robinson (Boston University)
- Mike Sheridan (University at Buffalo)
- Kelly Snook (Ames Research Center)
- Brad Thomson (Brown University)
- Kevin Watson (Johnson Space Center)
- Kevin Williams (Arizona State University)
- Kenji Yoshikawa (University of Alaska Fairbanks)
- Ray Arvidson (Washington University)