Status Report

Saturn and its ring: equilibrium states of rotating self-gravitating systems

By SpaceRef Editor
March 8, 2004
Filed under , ,

Condensed Matter, abstract

From: Iaroslav Ispolatov [view email]
Date: Mon, 14 Jul 2003 20:21:14 GMT (48kb)

Saturn and its ring: equilibrium states of rotating self-gravitating

I. Ispolatov

Comments: 7 pages, 2 figures

Subj-class: Statistical Mechanics

Low-energy or core-halo equilibrium states of self-gravitating systems with
finite angular momentum are studied. Core structure of such states is found to
be similar to the structure of the corresponding ground (zero-temperature)
states. Introduction of a physically relevant constraint that cores are
supported only gravitationally and do not come in contact with container walls
excludes the previously observed highest entropy asymmetric single-core
structures in which the core slides along the container equator. With such
constraint, the ground state of a rotating system is shown to consist of a
central core and an equatorial ring. The mass of the ring varies continuously
between zero for vanishing rotation and the full system mass for the maximum
angular momentum $L_{max}$ which the gravitationally self-supported localized
system can carry. The value of $L_{max}$ scales as $sqrt{ln(1/x_0)}$, where
$x_0$ is a ratio of the range of a short-distance regularization and the system
size. An example of soft-core potential regularization is considered; the
conclusions made for this example are shown to be valid for other forms of
short-range regularization as well.

Full-text: PostScript, PDF, or Other formats

References and citations for this submission:

CiteBase (autonomous citation navigation and analysis)

Links to:
/abs (/+), /0307,

SpaceRef staff editor.