Status Report

NASA ISS On-Orbit Status 31 December 2011

By SpaceRef Editor
December 31, 2011
Filed under , , ,
NASA ISS On-Orbit Status 31 December 2011
http://images.spaceref.com/news/iss.101.jpg

Happy New Year’s Eve!

(16 times for the Exp-30/31 crew of CDR Dan Burbank, FE-1 Anton Shkaplerov, FE-2 Anatoly Ivanishin, FE-4 Oleg Kononenko, F-5 Andre Kuipers & FE-6 Don Pettit while counting down to 2012!)

All ISS systems continue to function nominally, except those noted previously or below.

After wakeup, FE-1 Shkaplerov performed the routine inspection of the SM (Service Module) PSS Caution & Warning panel as part of regular Daily Morning Inspection.

FE-5 Kuipers & FE-6 Pettit completed their 3rd post-sleep sessions of the Reaction Self Test (Psychomotor Vigilance Self Test on the ISS) protocol. [RST is done twice daily (after wakeup & before bedtime) for 3 days prior to the sleep shift, the day(s) of the sleep shift and 5 days following a sleep shift. The experiment consists of a 5-minute reaction time task that allows crewmembers to monitor the daily effects of fatigue on performance while on ISS. The experiment provides objective feedback on neurobehavioral changes in attention, psychomotor speed, state stability, and impulsivity while on ISS missions, particularly as they relate to changes in circadian rhythms, sleep restrictions, and extended work shifts.]

Kuipers started his workday with Day 3 of his first (FD15) suite of sessions with the medical protocol Pro K (Dietary Intake Can Predict and Protect against Changes in Bone Metabolism during Spaceflight and Recovery), with diet logging after the urine pH spot test, for a 5-day period. [For Pro K, there will be five in-flight sessions (FD15, FD30, FD60, FD120, FD180) of samplings, to be shared with the NUTRITION w/Repository protocol, each one with five days of diet & urine pH logging and photography on the last day (science sessions are often referred to by Flight Day 15, 30, 60, etc. However, there are plus-minus windows associated with these time points so a “Flight Day 15” science session may not actually fall on the crewmember’s 15th day on-orbit). The crewmember prepares a diet log and then annotates quantities of food packets consumed and supplements taken. Urine collections are spread over 24 hrs; samples go into the MELFI (Minus Eighty Laboratory Freezer for ISS) within 30 min after collection. Blood samples, on the last day, are centrifuged in the RC (Refrigerated Centrifuge) and placed in MELFI at -80 degC. There is an 8-hr fasting requirement prior to the blood draw (i.e., no food or drink, but water ingestion is encouraged). MELFI constraints: Maximum MELFI Dewar open time: 60 sec; at least 45 min between MELFI Dewar door openings.]

Pettit started his first Pro K session, with diet logging after the urine pH spot test, for a 5-day period.

Later, Don began his first Ambulatory Monitoring session of the ESA ICV (Integrated Cardiovascular) experiment, assisted by Andre as CMO (Crew Medical Officer) in preparing the Actiwatches, electrode sites, attaching the harness and donning the newly launched Cardiopres. Before sleeptime, Pettit will swap Makita batteries and initiate the charging of the next power tool battery used for the Cardiopres. [ICV activities consist of two separate but related parts over a one-week time period: an ultrasound echo scan & an ambulatory monitoring session. Today, wearing electrodes, the HM2 (Holter Monitor 2) for recording ECG (Electrocardiogram) for 48 hours, the ESA Cardiopres to continuously monitor blood pressure for 24 hours, and two Actiwatches (hip/waist & ankle) for monitoring activity levels over 48 hours, Pettit started the ambulatory monitoring part of the ICV assessment. During the first 24 hrs (while all devices are worn), ten minutes of quiet, resting breathing are timelined to collect data for a specific analysis. The nominal exercise includes at least 10 minutes at a heart rate >=120 bpm (beats per minute). After 24 hrs, the Cardiopres is doffed and the HM2 HiFi CF Card and AA Battery are changed out to allow continuation of the session for another 24 hours. After data collection is complete, the Actiwatches and both HM2 HiFi CF Cards are downloaded to the HRF PC1, while Cardiopres data are downloaded to the EPM (European Physiology Module) Rack and transferred to the HRF PC1 via a USB key for downlink. The sessions are scheduled at or around FD14, FD30, FD75, FD135 and R-15 (there will be fewer sessions if mission duration is less than six months). The FD75 echo scan will include an exercise component with a second scan (subset of the first) completed within 5 minutes after the end of exercise. The primary objective of the accompanying CCISS (Cardiovascular Control on return from the ISS) experiment is to maximize the information about changes in cardiovascular and cerebrovascular function that might compromise the ability of astronauts to meet the challenge of return to an upright posture on Earth.]

Andre also broke out and configured the equipment for his first 24-hr urine collections under the NUTRITION/Repository protocol, starting tomorrow morning with first void. [Urine samples go into MELFI (Minus Eighty Laboratory Freezer for ISS) within 30 minutes after collection. Every individual urine/blood sample tube must be labeled with time of void and Crew ID (crew initials). Barcodes can be called down, placed in crew notes or via the BCR (barcode reader). For the subsequent blood sampling, there is an 8-hour fasting requirement prior to the blood draw. No food or drink, but water consumption is highly encouraged to ensure proper hydration. Exercise should not be conducted during the 8 hrs prior to the blood draw. There is a 20 min minimum to 30 min maximum blood coagulation period prior to RC (Refrigerated Centrifuge) spin.]

FE-2 Ivanishin completed the periodic maintenance of the active Russian BMP Harmful Impurities Removal System, starting the “bake-out” cycle to vacuum on absorbent bed #2 of the regenerable dual-channel filtration system. FE-2 will terminate the process at ~4:15pm EST. Bed #1 regeneration was performed yesterday. (Done last: 12/8 & 12/9). [Regeneration of each of the two cartridges takes about 12 hrs and is conducted only during crew awake periods. The BMP’s regeneration cycle is normally done every 20 days.]

FE-4 Kononenko tended the current experiment with the Russian/German KPT-21 Plasma Crystal-3+ (Plazmennyi-Kristall/PK-3+) payload, running in the MRM2 “Poisk” module, by checking the hermeticity of the evacuated EB vacuum chamber after wakeup and before bedtime (any pressure increase above the vacuum should stay within 5 mmHg). [Main objective of PK-3 is to study wave propagation and dispersion ratio in a dust plasma, i.e., fine particles charged and excited by HF (high frequency) radio power inside the evacuated work chamber, at a specified power of HF discharge, pressure, and a varied number of particles.]

Burbank, Shkaplerov, Ivanishin, Kononenko, Kuipers & Pettit joined in conducting the regular weekly three-hour task of thorough cleaning of their home, including COL (Columbus Orbital Laboratory) and Kibo JPM (JEM Pressurized Module). [“Uborka”, usually done on Saturdays, includes removal of food waste products, cleaning of compartments with vacuum cleaner, damp cleaning of the SM (Service Module) dining table, other frequently touched surfaces and surfaces where trash is collected, as well as the sleep stations with a standard cleaning solution; also, fan screens and grilles are cleaned to avoid temperature rises. Special cleaning is also done every 90 days on the HEPA (high-efficiency particulate air) bacteria filters in the Lab.]

As part of Uborka house cleaning, Anton, Anatoly & Oleg completed regular weekly maintenance inspection & cleaning of fan screens in the FGB (TsV2) plus Group E fan grilles in the SM (VPkhO, FS5, FS6, VP).

Burbank, Kuipers & Pettit filled out their weekly FFQ (Food Frequency Questionnaire) on the MEC (Medical Equipment Computer), the 5th for Dan and the first for Andre & Don. [On the FFQs, USOS astronauts keep a personalized log of their nutritional intake over time on special MEC software. Recorded are the amounts consumed during the past week of such food items as beverages, cereals, grains, eggs, breads, snacks, sweets, fruit, beans, soup, vegetables, dairy, fish, meat, chicken, sauces & spreads, and vitamins. The FFQ is performed once a week to estimate nutrient intake from the previous week and to give recommendations to ground specialists that help maintain optimal crew health. Weekly estimation has been verified to be reliable enough that nutrients do not need to be tracked daily.]

In the Lab (loc. O1), FE-5 cleaned the vents of the two OpsLAN Server SSC (Station Support Computer) T61p laptops with the vacuum cleaner to ensure optimal performance.

The CDR performed his 2nd session with the MedOps psychological evaluation experiment WinSCAT (Spaceflight Cognitive Assessment Tool for Windows), logging in on the MEC (Medical Equipment Computer) laptop and going through the psychological evaluation exercise on the PC-based WinSCAT application. [WinSCAT is a monthly time-constrained questionnaire test of cognitive abilities, routinely performed by astronauts aboard the ISS every 30 days before or after the PHS (periodic health status) test or on special CDR’s, crewmembers or flight surgeons request. The test uses cognitive subtests that measure sustained concentration, verbal working memory, attention, short-term memory, spatial processing, and math skills. The five cognitive subtests are Coding Memory – Learning, Continuous Processing Task (CPT), Match to Sample, Mathematics, and Coding Delayed Recall. These WinSCAT subtests are the same as those used during NASA’s long-duration bed rest studies.]

Dan also had another time slot reserved for making entries in his electronic Journal on his personal SSC (Station Support Computer). [Required are three journaling sessions per week.]

Anton performed the routine daily servicing of the SOZh system (Environment Control & Life Support System, ECLSS) in the SM. [Regular daily SOZh maintenance consists, among else, of checking the ASU toilet facilities, replacement of the KTO & KBO solid waste containers, replacement of EDV-SV waste water and EDV-U urine containers and filling EDV-SV, KOV (for Elektron), EDV-ZV & EDV on RP flow regulator.]

Burbank conducted the regular (~weekly) inspection & maintenance, as required, of the CGBA-4 (Commercial Generic Bioprocessing Apparatus 4) and CGBA-5 payloads in their ERs (EXPRESS Racks) at Lab O2 & O1, focusing on cleaning the muffler air intakes.

FE-1, FE-4 & FE-6 conducted their weekly PFCs (Private Family Conferences), via S-band/audio and Ku-band/MS-NetMeeting application (which displays the uplinked ground video on an SSC laptop), Anton at ~5:00am, Oleg at ~7:00am, Don at ~12:50pm EST.

At ~8:30am, the six crewmembers held the regular WPC (Weekly Planning Conference) with the ground, discussing next week’s “Look-Ahead Plan” (prepared jointly by MCC-H and TsUP-Moscow timeline planners), via S-band/audio, reviewing upcoming activities and any concerns about future on-orbit events.

At ~9:00am, the CDR powered up the SM’s amateur radio equipment (Kenwood VHF transceiver with manual frequency selection, headset, & power supply) and at 9:05am conducted a ham radio session with students at the Historical Museum of Gdansk, Gdansk, Poland.

The crew worked out with their regular 2-hr physical exercise protocol on the TVIS treadmill with vibration isolation & stabilization (FE-1, FE-2, FE-4), ARED advanced resistive exerciser (CDR, FE-4, FE-5, FE-6), T2/COLBERT advanced treadmill (CDR, FE-5, FE-6), and VELO ergometer bike with load trainer (FE-1, FE-2).

Tasks listed for Shkaplerov, Kononenko & Ivanishin on the Russian discretionary “time permitting” job for today were C
* A ~30-min. run of the GFI-8 “Uragan” (hurricane) earth-imaging program with the NIKON D3X digital camera with Sigma AF 300-800mm telelens, aiming for the Aral Sea, glaciers of Patagonia, the Kerch Strait, Taman, Laganakskoe plateau and the Volga delta,
* A 10-min. photography session for the DZZ-13 “Seiner” ocean observation program, obtaining HDV (Z1) camcorder footage of color bloom patterns in the waters of the South-Eastern Pacific, then copying the images to the RSK-1 laptop,
* A ~30-min. session for Russia’s EKON Environmental Safety Agency, making observations and taking KPT-3 aerial photography of environmental conditions on Earth using the NIKON D3X camera with the RSK-1 laptop, and
* More preparation & downlinking of reportages (written text, photos, videos) for the Roskosmos website to promote Russia’s manned space program (max. file size 500 Mb).

Weekly Science Update (Expedition Thirty/Thirty-One — Week 15)
2D NANO Template (JAXA): The experiment is continuing in MELFI1, Dewar 4. The samples are supposed to proceed, slowly arranging peptides on base plates. The samples will be returned on 28S.

3D SPACE: Complete.

AgCam (Agricultural Camera): No report.

ALTCRISS (Alteino Long Term monitoring of Cosmic Rays on the ISS): Complete.

ALTEA SHIELD (NASA/ASI): No report.

AMS-02 (Alpha Magnetic Spectrometer): AMS payload and laptop operations are nominal. Happy Holidays from the AMS team!

APEX (Advanced Plant Experiments on Orbit) -Cambium: No report.

APEX-TAGES (Transgenic Arabidopsis Gene Expression System): No report.

Asian Seed 2010 (JAXA): Returned on ULF6.

BCAT-6 (Binary Colloidal Alloy Test 6): No report. [Colloids are particles as small as a few tens of nanometers (a thousandth of a thousandth of a millimeter) that are suspended in a medium, usually a liquid or a gas. The name “colloid” comes from the Greek word for “glue”, and expresses very important properties of colloids: when small and light enough, particles can be influenced in their behavior by forces of electromagnetic origin, and make them stick together, or repel each other depending on the configuration. Colloids are widely studied in science because the forces between particles can be controlled and tuned and because particles, while being small enough to be influenced by such forces, are big and slow enough to be seen with a relatively simple and inexpensive laboratory instrument like a microscope. This is why colloids are often studied as model for molecular systems (like standard gases or liquids) where molecules, the individual constituents, are much smaller than colloids and cannot be seen with light. As mentioned, forces between colloids can be tuned giving rise to a rich variety of phenomena. One of them is aggregation, which is when particles stick together and tend to form structures. Among the many ways to induce particle aggregation, one allows to do so by controlling the temperature of the solution in which the particles are immersed, thanks to very weak forces called “critical Casimir forces” that have been predicted more than 30 years ago but just partially verified in experiments. The objective of SODI COLLOID is to measure such forces and produce a controlled aggregation of tiny plastic particles. This would allow to shed light on critical Casimir forces and to make a step towards the fabrication of new nanostructured materials with remarkable optical properties for industrial applications.]

BIOLAB (ESA): No report.

BIORHYTHMS (JAXA, Biological Rhythms): No report.

BISE (CSA, Bodies in the Space Environment): No report.

BISPHOSPHONATES: No report.

BXF-Facility (Boiling eXperiment Facility, NASA): No report.

BXF-MABE (Microheater Array Boiling Experiment, NASA): No report.

BXF-NPBX (Pool Boiling Experiment, NASA): No report.

CARD (Long Term Microgravity: Model for Investigating Mechanisms of Heart Disease, ESA): No report.

CARDIOCOG-2: Complete.

CB (JAXA Clean Bench): No report.

CBEF-2 (JAXA Cell Biology Experiment Facility)/SPACE SEED: No report.

CCISS (Cardiovascular & Cerebrovascular Control on Return from ISS): No report.

CERISE (JAXA): No report.

CCF (Capillary Channel Flow, NASA): No report.

CFE-2 (Capillary Flow Experiment 2, NASA): No report.

CFS-A (Colored Fungi in Space-A, ESA): No report.

CSI-5/CGBA-5 (CGBA Science Insert #5/Commercial Generic Bioprocessing Apparatus 5): No report.

CGBA-2 (Commercial Generic Bioprocessing Apparatus 2): Complete.

CIR (Combustion Integrated Rack), MDCA/Flex: No report.

Commercial (Inc 23&24, JAXA): No report.

Commercial (Inc 25 & 26, JAXA): No report.

CSLM-2 (Coarsening in Solid-Liquid Mixtures 2): No report.

CsPins (JAXA): No report.

CubeLab: No report.

CW/CR (Cell Wall/Resist Wall) in EMCS (European Modular Cultivation System): Complete.

DECLIC-ALI (Device for the Study of Critical Liquids & Crystallization-ALICE-like, CNES/NASA): No report.

DomeGene (JAXA): Complete.

DOSIS (Dose Distribution Inside ISS, ESA): No report.

EarthKAM (Earth Knowledge Acquired by Middle School Students): No report.

EDR (European Drawer Rack, ESA): EDR was activated on 12/31 in support of the KUBIK check-out. KUBIK 3 temperature and centrifuge data files recorded during the 3-day ROALD2 experiment were transferred from KUBIK to EDR and subsequently downlinked for read-out on 12/26. (See ROALD-2 entry).

EKE (Endurance Capacity by Gas Exchange and Heart Rate Kinetics During Physical Training, ESA): No report.

ELITE-S2 (Elaboratore Immagini Televisive – Space 2): Planned.

EMCS (European Modular Cultivation System): No report.

ENose (Electronic Nose): No report.

EPM (European Physiology Module): No report.

EPO (Educational Payload Operations, NASA) (Eye in the Sky; Sleep 2): No report.

EPO (Educational Payload Operations, NASA) (Sesame Street): No report.

EPO (Educational Payload Operations, NASA) (Kids in Micro-G): No report.

EPO (Educational Payload Operations, NASA) (Earth/Moon/Mars Demo): No report.

EPO (Educational Payload Operations, NASA) (Space Sports): No report.

EPO LES-2 (ESA): No report.

EPO GREENHOUSE (ESA): No report.

EPO 3-min Video (JAXA): No report.

EPO J-Astro Report (JAXA): No report.

EPO Dewey’s Forest (JAXA): Closed out on 3/15.

EPO Space Clothes (JAXA): Complete.

EPO Hiten (Dance, JAXA): No report.

EPO Lego Bricks (NASA, JAXA): No report.

EPO-5 SpaceBottle (Message in a Bottle, JAXA): No report.

EPO Moon Score (JAXA): No report.

EPO-7 Try Zero-G (JAXA): No report.

EPO Kibo Kids Tour (JAXA): Complete.

EPO Paper Craft (Origami, JAXA): No report.

EPO Poem (JAXA): No report.

EPO-6 Spiral Top 2 (JAXA): No report.

EPO-7 Doctor Demo (JAXA): No report.

EPO-7 Green Tea Preparation (JAXA): No report.

EPO-7 Ink Ball (JAXA): No report.

EPO-7 Video (JAXA):

ERB-2 (Erasmus Recording Binocular, ESA): [ERB-2 aims are to develop narrated video material for various PR & educational products & events, including a 3D interior station view.] No report.

ETD (Eye Tracking Device): Completed.

FACET-2 (JAXA): No report.

FERULATE (JAXA): No report.

FIR/LMM/CVB (Fluids Integrated Rack / Light Microscopy Module / Constrained Vapor Bubble): No report.

Fish Scales (JAXA): Completed on FD7/ULF-4 and returned on STS-132.

FOAM STABILITY (ESA): No report.

FOCUS: No report.

FSL (Fluid Science Laboratory, ESA): No report.

FWED (Flywheel Exercise Device, ESA): No report.

GENARA-A (Gravity Regulated Genes in Arabidopsis A/ESA): No report.

GEOFLOW-2 (ESA): No report. [Background: Everybody is familiar with liquids. In an average day we get to use, handle or drink water or other liquids. And everybody knows how fluids (that is liquids and gases) behave: when subjected to a net force, may be pressure, a temperature difference or gravity, they can move freely. Scientists have been studying how fluids move for centuries, and managed to write mathematical formulas that can describe and predict such movements. Unfortunately, these equations are extremely complex and only approximate solutions are known. As a result, our quantitative understanding of fluid movement is just partial. This is especially true for natural phenomena where the forces can be enormous and unpredictable, like in oceans or in the atmosphere. Or the interior of the earth, where rocks are exposed to pressures and temperatures so incredibly high that they slowly move and adapt their shape. That is, over hundreds of years rocks flow just like a very viscous liquid. Scientists try to study such flows but cannot observe them directly due to the fact that they take place deep beneath the surface of our planet. The only way is to have computers simulating those movements starting from the equations, but how to check whether computers are correct? This is what Geoflow II is trying to answer on board the International Space Station. Geoflow II is a miniature planet that has some of its essential ingredients: a fluid can freely move inside a spherical container that rotates, has temperature differences and has a simulated gravity directed towards the centre just like in a real planet. By taking pictures of the fluid movements, scientists are able to understand the essential characteristics of the flows and determine whether computer simulations are correct or whether they need to be refined and improved towards a better understanding of the elusive movements that take place inside our planet.]

HAIR (JAXA): No report.

HDTV System (JAXA): No report.

Hicari (JAXA): On 12/28, we completed Hicari Experiment checkout and it has continued an endurance test as a preparation for the actual Hicari experiment. This test will run until 12/30.

Holter ECG (JAXA): No report.

HQPC (JAXA): Was delivered by 34P.

HREP (HICO/Hyperspectral Imager for the Coastal Ocean & RAIDS/Remote Atmospheric & Ionospheric Detection System/JAXA): HREP has been put in a safe configuration and will resume operations on 1/3.

HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions/JAXA): No report.

ICE CRYSTAL (JAXA): Complete.

ICV (Integrated Cardiovascular): No report.

IMMUNO (Neuroendocrine & Immune Responses in Humans During & After Long Term Stay at ISS): Complete.

INTEGRATED IMMUNE: No report.

InSPACE-2 (Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions 2): No report.

IRIS (Image Reversal in Space, CSA): No report.

ISS Amateur/Ham Radio: No report.

ISSAC (ISS Agricultural Camera, NASA): No report.

IV Gen (Intravenous Fluids Generation): No report.

JOURNALS (Behavioral Issues Associated with Isolation and Confinement, NASA): “Dan, the PI has received the first downlink of your Journals entries. He looks forward to many more Journal entries. Thanks for your commitment to the experiment.”” [Studies conducted on Earth have shown that analyzing the content of journals and diaries is an effective method for identifying the issues that are most important to a person. The method is based on the reasonable assumption that the frequency that an issue or category of issues is mentioned in a journal reflects the importance of that issue or category to the writer. The tone of each entry (positive, negative, or neutral) and phase of the expedition also are variables of interest. Study results will lead to recommendations for the design of equipment, facilities, procedures, and training to help sustain behavioral adjustment and performance during long-duration space expeditions to the ISS, asteroids, the Moon, Mars, and beyond. Results from this study could help to improve the behavioral performance of people living and working under a variety of conditions here on Earth.]

KID/KUBIK6: No report.

KUBIK 3 (ESA): “Thank you Dan for setting-up testing the KUBIKs. We very much appreciate your valuable comments about the gasket on KUBIK-6. (See ROALD-2 entry).”

LMM/PACE-2 (Light Microscopy Module / Preliminary Advanced Colloids Experiment): No report.

LOCAD-PTS (Lab-on-a-Chip Application Development-Portable Test System): No report.

Marangoni Exp. (JAXA): No report.

Marangoni DSD C Dynamic Surf (JAXA): Payload name was change from Marangoni DSD to Dynamic Surf.

Marangoni UVP (JAXA): No report.

MARES (Muscle Atrophy Research & Exercise System, ESA/NASA): No report.

Matryoshka-2 (RSA): No report.

MAXI (Monitor of All-sky X-ray Image, JAXA): Continuing telemetry monitoring.

MDCA/Flex-2: No report.

MEIS (Marangoni Experiment for ISS) in JAXA FPEF (Fluid Physics Experiment Facility): No report.

Microbe-2 (JAXA): Sample returned by ULF6.

Micro-G Clay (JAXA EPO): Complete.

MISSE-8 (Materials ISS Experiment 8): MISSE 8 has been put in a safe configuration and will resume operations on 1/3.

MMA (JAXA/Microgravity Measurement Apparatus): No report.
MPAC/SEED (JAXA): No report.
MSG-SAME (Microgravity Science Glovebox-Smoke Aerosol Measurement Experiment): No report.

MSPR (Multi Purpose Small Payload Rack, JAXA): No report.

MSL (Materials Science Laboratory, ESA): No report.

MTR-2 (Russian radiation measurements): Passive dosimeters measurements in DC-1 “Pirs”.

MULTIGEN-1: Completed.

MYCO 3 (JAXA): On 9/22, Mike and Satoshi completed sample collection.

MyoLab (JAXA): Completed on 4/20.

NANOSKELETON (Production of High Performance Nanomaterials in Microgravity, JAXA): No report.

NEURORAD (JAXA): No report.

NEUROSPAT (ESA/Study of Spatial Cognition, Novelty Processing and Sensorimotor Integration): “Andre & Don, you will be performing Andre’s first NEUROSPAT session next week. [During microgravity stay, human body goes through multitude of physiological changes in order to accommodate to the new environment. As the brain is a master organ where major crucial processes take place, it is fundamental to understand how it manages adaptation for living in Space. One of the main purposes of Neurospat (NES) experiment is to focus on how microgravity environment influences cerebral activity of astronauts aboard ISS. For this, the global electrical activity of the brain of the astronaut is measured thanks to electroencephalogram (EEG) technique, while he or she is executing specific tasks through a computer as if it was a kind of videogame. In practice, the astronaut is wearing a specially equipped cap with passive, gel filled electrodes that are in contact with his/her scalp while he or she is performing the specific tasks that we have designed. These are visual-orientation perception and visuo-motor tracking tasks that may be encountered on a daily basis. The tasks allow the study of 5 cognitive processes: Perception, Attention, Memorization, Decision and Action. Besides there are also task-irrelevant images that are showed to the astronaut in order to assess how well he or she processes novel visual stimuli. The electrodes all over the scalp are linked to sensitive amplifiers that allow us to measure small variations of electrical potential between different regions of the scalp. These signals are in turn used to estimate activity in the cerebral cortex related to the task being performed. Also, they serve to identify the mental processes associated with these tasks and to localize in the brain the sources of the underlying neural activity. After analysis of the data we can better understand whether the novel environment of microgravity accompanied by a multitude of stressors may place an increased load on the cognitive capacity of the human brain and whether the sensory signals and motor responses of astronauts are processed and interpreted differently because a new reference frame.]

NOA-1/-2 (Nitric Oxide Analyzer, ESA): Complete.

NUTRITION w/REPOSITORY/ProK: No report.

ODK (Onboard Diagnostic Kit, JAXA): No report.

PACE-2 (Preliminary Advanced Colloids Experiment 2, NASA): (please see under FIR and LMM/PACE-2.

PADIAC (Pathway Different Activators, ESA): No report.

PADLES (JAXA, Area PADLES 6/7; Passive Area Dosimeter for Lifescience Experiment in Space): On 12/23, the 17 Dosimeters were installed after the E-DPC. Thanks a lot. The Dosimeters will return to Earth by 28S in March 2012.

PASSAGES (JAXA): No report.

PCDF-PU (Protein Crystallization Diagnostic Facility – Process Unit): No report.

PCG (JAXA, Protein Crystal Growth): Returned on 26S on 9/16.

PCRF (Protein Crystallization Research Facility) Reconfiguration (JAXA): See PCG.

PLSG (Plant Signaling, NASA/ESA): No report.

PMDIS (Perceptual Motor Deficits in Space): Complete.

POLCA/GRAVIGEN (ESA): Complete.

Portable PFS: No report.

Pro K: No report.

RadGene & LOH (JAXA): Complete.

RadSilk (JAXA): No report.

Reaction Self Test (RST/Psychomotor Vigilance Self Test on the ISS): “Don and Andre, thank you for your participation in Reaction Self Test. We look forward to your increment! Happy Holidays to all of you!”

ROALD-2 (Role of Apoptosis in Lymphocyte Depression 2, ESA): “Dan and Andre: Congratulations! You performed the ROALD2 activities as a Swiss clock – exactly on time and with impressive speed. The whole ROALD2 science and operations team involved wants to thank you very very much for your excellent work on this experiment. They look forward to the ROALD2 experiment containers returning on 28S to start their analysis.” [Background: The ROALD-2 experiment studies how the function of T-cells from the immune system are affected by microgravity and spaceflight. T-cells play an important role in controlling the immune systems response to infection. It has previously been shown that the immune response of astronauts can be reduced following spaceflight and it has also been shown that the activation of T-cells in culture is reduced in microgravity. A series of experiments on T-cells and other immune system cells have been previously performed by different scientific teams on Space Shuttle and the ISS over the last 30 years. The data from these individual experiments provides information which together can be used to understand the mechanisms by which gravity or the absence of gravity can affect T-cell function.]

Robonaut (NASA): No report.

RYUTAI Rack (JAXA): No report.

SAIBO Rack (JAXA): No report.

SAMS/MAMS (Space & Microgravity Acceleration Measurement Systems): No report.

SAMPLE: Complete.

SCOF (Solution Crystallization Observation Facility, JAXA): No report.

SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload, JAXA): Continuing telemetry monitoring.

SHERE II (Shear History Extensional Rheology Experiment II): No report.

SLAMMD (Space Linear Acceleration Mass Measurement Device): No report.

SLEEP (Sleep-Wake Actigraphy & Light Exposure during Spaceflight): No report.

SMILES (JAXA): Continuing telemetry monitoring.

SODI/IVIDIL (Selectable Optical Diagnostics Instrument/Influence of Vibration on Diffusion in Liquids, ESA): No report.

SODI/COLLOID (Selectable Optical Diagnostics Instrument/Colloid): No report.

SODI-DSC (Selectable Optical Diagnostics Instrument/Diffusion & Soret Coefficient, ESA): There was a problem with MSG during the rack activation on 12/19. One of the MSG power boards needed to be replaced and SODI-DSC operations were put on hold. Thanks for replacing the MSG ESEM-1 Board on 12/28. DSC science runs have resumed since then and are on-going. The SODI-DSC science team finished programming a post-processing algorithm which improves the phase images drastically leading to significant better science return. Overall, since 11/27 to date, 34 science runs (out of a total of 55 runs) have been performed. The science team has analyzed 32 runs, and 2 runs are impacted by a laser mode hopping phenomenon. Those 2 runs will have to be repeated. Given the Experimental Cell#1 anomaly with a bubble appearing, this cell will not be processed anymore, and we are left with 4 experimental cells to investigate. [Background: Fluids and gases are never at rest. This statement is in apparent contradiction with our experience: when we pour water in a glass and wait until all flows have disappeared and the temperature of the liquid is in equilibrium with that of the room, we see that water appears to be completely at rest. However, if we were able to see the individual molecules of water with a very powerful microscope, we would discover that they are incessantly moving and collide with each other following frantic, random paths even if the liquid appears to be quiescent at naked eye. Scientists are interested in observing and measuring such movements because they reveal important, practical information: how fast does heat propagates in a fluid? How fast do liquid mixtures mix? Such phenomena occur in absence of a macroscopic flow, that is when the fluid appear to be at rest, and are called heat and mass diffusion respectively. While the theoretical prediction of heat and mass diffusion is still quite challenging, its measurement is a standard laboratory practice, but may become extremely difficult or impossible when dealing with mixtures of many liquids, due to the fact that such measurement needs to be carried out when the fluid is quiescent, a condition sometimes impossible to achieve on ground. This is precisely the objective of the SODI DSC experiment carried out on board the International Space Station: the measurement of diffusion in mixtures of liquids. By using very sensitive optical techniques, it will be possible to measure mass diffusion, compare with current theories, and improve our present understanding of how molecules move in liquid mixtures. The results will be used by the large team of scientists involved in the project to try to understand which of the many existing theories for mass diffusion is correctly predicting the experimental behavior.]

SOLAR (Solar Monitoring Observatory, ESA): Nominal sun visibility window #48 measurements started on 12/16 and concluded on 12/28 with nominal operations for both instruments SolACES and SOLSPEC.

SOLO (Sodium Loading in Microgravity): No report.

Space-DRUMS (Space Dynamically Responding Ultrasonic Matrix System): No report.

Space Food (JAXA): No report.

SHD (Space Headaches, ESA): “Andre, after your first week of daily questionnaires, we look forward from now on to your weekly questionnaires.” [Background: The neurologists from Leiden University want to study the question whether the astronauts, while in space, suffer from the headaches. With the help of simple questionnaires the astronauts will register the headache episodes and the eventual accompanying symptoms. The results will hopefully help to characterize the frequency and characteristics of space headache and to develop countermeasure to prevent/minimize headache occurrence during the space flight.]

SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite): No report.

SPHINX (SPaceflight of Huvec: an Integrated eXperiment, ESA): No report.

SPICE (Smoke Point In Co-flow Experiment): No report.

SPINAL (Spinal Elongation): No report.

SPRINT: No report.

SS-HDTV (Super Sensitivity High Definition Camera, JAXA): No more runs planned on Task List for Satoshi.

STP-H3 (Space Test Program C Houston 3): MHTEX is currently running in a steady state mode. Canary collected data during the 29S docking event and will resume operations 1/3. VADER is continuing lifetime testing of the VEDs at a reduced cycle rate. DISC is processing images that were taken in previous weeks.

SWAB (Characterization of Microorganisms & Allergens in Spacecraft): No report.

TASTE IN SPACE (ESA): No report.

THERMOLAB (ESA): “Dan, thanks for your first VO2max / THERMOLAB / EKE session completed last week. We got confirmation that the science data is valid!”

TRAC (Test of Reaction & Adaptation Capabilities): Planned.

TREADMILL KINEMATICS: No report.

TRIPLELUX-B (ESA): No report.

ULTRASOUND: Planned.

UMS (Urine Monitoring System (NASA): No report.

VASCULAR (CSA): “No report.

VCAM (Vehicle Cabin Atmosphere Module, NASA): No report.

VESSEL ID System (ESA): Nominal data acquisition on-going with the Norwegian NORAIS receiver.

VESSEL IMAGING (ESA): “Andre, the VESSEL IMAGING science team was happy to gather all necessary scan images during your first session on 12/29. Great and smooth work, big thanks! Don, you will be performing the first VESSEL IMAGING session next week.” [Background: It is known that the ability of blood vessels to vasoconstrict – the ability of the muscular vessel wall to narrow the diameter of the blood vessel – is impaired during and after a human has been in space. “Vessel Imaging” is using the Ultrasound scanner on board the ISS to take images of the five different blood vessels in the lower abdomen and in the legs to study what changes occur to cause the blood vessels to be less able to vasoconstrict. For each vessel, a 5 second scan is performed to observe the blood vessel during several heart beats, followed by a scan where the ultrasound scan-head is tilted to allow a “cut through the blood vessel wall”. The same scans are also performed before flight, and these pre-flight images are used as the baseline to which the in-flight data is compared with. The images are analyzed to detect any changes in the blood vessel wall properties, such as wall thickness, elasticity or structure, changes in the size of the blood vessel or blood flow (volume) while the crewmember is in orbit.]

VIABLE (eValuatIon And monitoring of microBiofiLms insidE the ISS Payload Touch, NASA): No report.

VO2max (NASA): No report.

VLE (Video Lessons ESA): No report.

WAICO #1/#2 (Waving and Coiling of Arabidopsis Roots at Different g-levels; ESA): No report.

YEAST B (ESA): No report.

CEO (Crew Earth Observation): No report.

CEO (Crew Earth Observation) target uplinked for today was Lake Nasser, Toshka Lakes, Egypt (looking right for the Toshka Lakes nearer track, and Lake Nasser further off track. Every six months CEO staff requests documentation of water levels in the several water bodies of this long-term monitoring site. Lake Nasser is one of the largest man-made lakes in the world, holding an enormous 157 cubic km of water, with a shoreline length of 7844 km).

ISS Orbit (as of this morning, 7:31am EST [= epoch])
Mean altitude C 391.1 km
Apogee height C 407.5 km
Perigee height C 374.8 km
Period — 92.38 min.
Inclination (to Equator) — 51.64 deg
Eccentricity — 0.0024121
Solar Beta Angle — -37.5 deg (magnitude increasing)
Orbits per 24-hr. day — 15.59
Mean altitude loss in the last 24 hours — 88 m
Revolutions since FGB/Zarya launch (Nov. 98) — 75,171
Time in orbit (station) — 4789 days
Time in orbit (crews, cum.) — 4076 days

Significant Events Ahead (all dates Eastern Time and subject to change):
————–Six-crew operations—————-
01/18/12 — ISS Reboost (set up phasing for 46P)
01/24/12 — Progress M-13M/45P undock
01/25/12 — Progress M-14M/46P launch
01/27/12 — Progress M-14M/46P docking (DC-1)
02/07/12 — SpaceX Falcon 9/Dragon launch — (target date)
02/10/12 — SpaceX Falcon 9/Dragon berthing — (target date)
02/14/12 — Russian EVA
02/23/12 — SpaceX Falcon 9/Dragon unberth — (target date)
03/09/12 — ATV3 launch — (target date)
03/16/12– Soyuz TMA-22/28S undock/landing (End of Increment 30)
————–Three-crew operations————-
03/30/12 — Soyuz TMA-04M/30S launch C G.Padalka (CDR-32)/J.Acaba/K.Volkov — (Target Date)
04/01/12 — Soyuz TMA-04M/30S docking (MRM2) — (Target Date)
————–Six-crew operations—————-
TBD — 3R Multipurpose Laboratory Module (MLM) w/ERA C launch on Proton (under review)
04/24/12 — Progress M-14M/46P undock
04/25/12 — Progress M-15M/47P launch
04/27/12 — Progress M-15M/47P docking
TBD — 3R Multipurpose Laboratory Module (MLM) C docking (under review)
05/16/12 — Soyuz TMA-03M/29S undock/landing (End of Increment 31)
————–Three-crew operations————-
05/30/12 — Soyuz TMA-05M/31S launch C S.Williams (CDR-33)/Y.Malenchenko/A.Hoshide
06/01/12 — Soyuz TMA-05M/31S docking
————–Six-crew operations—————-
06/26/12 — HTV-3 launch (target date)
09/12/12 — Soyuz TMA-04M/30S undock/landing (End of Increment 32)
————–Three-crew operations————-
09/26/12 — Soyuz TMA-06M/32S launch C K.Ford (CDR-34)/O.Novitskiy/E.Tarelkin
09/28/12 C Soyuz TMA-06M/32S docking
————–Six-crew operations————-
11/12/12 — Soyuz TMA-05M/31S undock/landing (End of Increment 33)
————–Three-crew operations————-
11/26/12 — Soyuz TMA-07M/33S launch C C.Hadfield (CDR-35)/T.Mashburn/R.Romanenko
11/28/12 C Soyuz TMA-07M/33S docking
————–Six-crew operations————-
03/19/13 — Soyuz TMA-06M/32S undock/landing (End of Increment 34)
————–Three-crew operations————-
04/02/13 C Soyuz TMA-08M/34S launch C P.Vinogradov (CDR-36)/C.Cassidy/A.Misurkin
04/04/13 C Soyuz TMA-08M/34S docking
————–Six-crew operations————-
05/16/13 C Soyuz TMA-07M/33S undock/landing (End of Increment 35)
————–Three-crew operations————-
05/29/13 C Soyuz TMA-09M/35S launch C M.Suraev (CDR-37)/K.Nyberg/L.Parmitano
05/31/13 C Soyuz TMA-09M/35S docking
————–Six-crew operations————-
09/xx/13 C Soyuz TMA-08M/34S undock/landing (End of Increment 36)
————–Three-crew operations————-
09/xx/13 C Soyuz TMA-10M/36S launch C M.Hopkins/TBD (CDR-38)/TBD
09/xx/13 C Soyuz TMA-10M/36S docking
————–Six-crew operations————-
11/xx/13 C Soyuz TMA-09M/35S undock/landing (End of Increment 37)
————–Three-crew operations————-
11/xx/13 C Soyuz TMA-11M/37S launch C K.Wakata (CDR-39)/R.Mastracchio/TBD
11/xx/13 C Soyuz TMA-11M/37S docking
————–Six-crew operations————-
03/xx/14 C Soyuz TMA-10M/36S undock/landing (End of Increment 38)
————–Three-crew operations————-

SpaceRef staff editor.