Status Report

NASA ISS On-Orbit Status 11 June 2012

By SpaceRef Editor
June 11, 2012
Filed under , , ,
NASA ISS On-Orbit Status 11 June 2012
NASA ISS On-Orbit Status 11 June 2012

ISS On-Orbit Status 06/11/12

All ISS systems continue to function nominally, except those noted previously or below. Underway: Week 7 of Increment 31 (six-person crew).

After wakeup, CDR Kononenko performed the routine inspection of the SM (Service Module) PSS Caution & Warning panel as part of regular Daily Morning Inspection.

Upon wakeup, FE-3 Acaba, FE-5 Kuipers & FE-6 Pettit completed their weekly post-sleep session of the Reaction Self-Test (Psychomotor Vigilance Self-Test on the ISS) protocol, the 7th for Joe, the 47th for Don & André. [RST is done twice daily (after wakeup & before bedtime) for 3 days prior to the sleep shift, the day(s) of the sleep shift and 5 days following a sleep shift. The experiment consists of a 5-minute reaction time task that allows crewmembers to monitor the daily effects of fatigue on performance while on ISS. The experiment provides objective feedback on neurobehavioral changes in attention, psychomotor speed, state stability, and impulsivity while on ISS missions, particularly as they relate to changes in circadian rhythms, sleep restrictions, and extended work shifts.]

FE-6 Don Pettit unstowed the Pro K pH kit and prepositioned it with controlled diet menu items and daily consumables in preparation for his upcoming 5th (FD180) Pro K Controlled Diet activity, starting tomorrow with the first pH test and diet log entry. [For the Pro K (Dietary Intake Can Predict and Protect against Changes in Bone Metabolism during Spaceflight and Recovery) protocol, there are five in-flight sessions (FD15, FD30, FD60, FD120, FD180) of samplings, to be shared with the NUTRITION w/Repository protocol, each one with five days of diet & urine pH logging and photography on the last day. The crewmember prepares a diet log and then annotates quantities of food packets consumed and supplements taken. Urine collections are spread over 24 hrs; samples go into the MELFI (Minus Eighty Laboratory Freezer for ISS) within 30 min after collection. Blood samples, on the last day, are centrifuged in the RC (Refrigerated Centrifuge) and placed in MELFI at -80 degC. There is an 8-hr fasting requirement prior to the blood draw (i.e., no food or drink, but water ingestion is encouraged). MELFI constraints: Maximum MELFI Dewar open time: 60 sec; at least 45 min between MELFI dewar door openings. Background on pH: In chemistry, pH (Potential Hydrogen) is a measure of the acidity or basicity of a watery solution. Pure water is neutral, with a pH close to 7.0 at 25 degC. Solutions with a pH less than 7 are “acidic” and solutions with a pH greater than 7 are “basic” or “alkaline”. pH measurements are important in medicine, biology, chemistry, agriculture, forestry, food science, environmental science, oceanography, civil engineers and many others.]

CDR Kononenko had ~2h40m set aside for conducting the periodic electrical plug-in audit in the RS (Russian Segment), i.e. SM, FGB, DC1, MRM1, MRM2, plus PPS-31 & PPS-26 panels in SM, logging the specific hardware/equipment currently plugged in each power outlet. [Using an uplinked tracking list, FE-2 compared the onboard situation (panel locations, power outlet designations, users, operating mode, nominal current load) against listed plug-in data, updated the listing where necessary and prepared the file for downlink via OCA.]

FE-1 Padalka configured the Russian payload BTKh-43 KONSTANTA for a new run with a fresh cassette (#3-4), supported by ground specialist tagup via S-band.

FE-2 Revin performed periodic service of the RS radiation payload suite “Matryoshka-R” (RBO-3-2), verifying proper function of the radiation detectors by taking readings from the LULIN-5 electronics box located in the MRM1 Rassvet module near the spherical “phantom”. [A total of eight Bubble dosimeter detectors (dosimeters (A41, A42, A43, A44, A45, A46, A47, A48) are deployed in the RS. The complex Matryoshka payload suite is designed for sophisticated radiation studies. Note: Matryoshka is the name for the traditional Russian set of nested dolls.]

FE-3 Acaba downloaded the accumulated data from his recent first (FD15) 24-hr ICV (Integrated Cardiovascular) Ambulatory Monitoring session from two Actiwatch Spectrums and two HM2 HiFi CF Cards to the HRF PC1 (Human Research Facility Portable Computer 1). The laptop was then powered off. [For the ICV Ambulatory Monitoring session, during the first 24 hrs (while all devices are worn), ten minutes of quiet, resting breathing are timelined to collect data for a specific analysis. The nominal exercise includes at least 10 minutes at a heart rate ≥120 bpm (beats per minute). After 24 hrs, the Cardiopres/BP is doffed and the HM2 HiFi CF Card and AA Battery are changed out to allow continuation of the session for another 24 hours, with the Makita batteries switched as required. After data collection is complete, the Actiwatches and both HM2 HiFi CF Cards are downloaded to the HRF PC1, while Cardiopres data are downloaded to the EPM (European Physiology Module) Rack and transferred to the HRF PC1 via a USB key for downlink.]

In COL (Columbus Orbital Laboratory), Acaba afterwards performed his FD30 ESA ICV (Integrated Cardiovascular) Resting Echo Scan in the US Lab, assisted by Don Pettit, serving as Operator/CMO (Crew Medical Officer) operating the USND (Ultrasound) scans after setting up the equipment and powering it on. Joe later downloaded the data and restowed the gear. [Wearing electrodes, ECG (Electrocardiograph) cable & VOX, Joe underwent the USND scan for ICV assessment, with video being recorded from the HRF (Human Research Facility) Ultrasound and COL cabin camera. Heart rate was tracked with the HRM (Heart Rate Monitor). There are dietary constraints, and no exercise is allowed 4 hrs prior to scan. After confirmed file transfer, the gear was powered down and stowed. Later, the data from the two HM-2 (Holter Monitor 2) HiFi Cards and two Actiwatch Spectrums were transferred from the USND-2 (Ultrasound 2) hard drive to the USND-2 USB drive. Voice required last 5 minutes for crew to inform ground copy process is complete. The USND echo experiment uses the Image Collector software on the laptop and requires VOX/Voice plus RT Video downlink during the activity. Goal of the ICV experiment is to quantify the extent, time course, and clinical significance of cardiac atrophy and identify its mechanisms. The ICV experiment consists of two separate but related activities over a one-week time period: an ultrasound echo scan & an ambulatory monitoring session. The sessions are scheduled at or around FD14, FD30, FD75, FD135 and R-15 (there are fewer sessions if mission duration is less than six months).]

André Kuipers used the ICV Ambulatory Monitoring equipment himself, assisted by Pettit as CMO in preparing the Actiwatches, electrode sites, attaching the harness and donning the Cardiopres, and then began his 5th and final experiment session with Cardiopres, reaching the 10-min resting period at ~12:45pm EDT. [ICV activities consist of two separate but related parts over a one-week time period: an ultrasound echo scan & an ambulatory monitoring session. Today, wearing electrodes, the HM2 (Holter Monitor 2) for recording ECG (Electrocardiogram) for 48 hours, the ESA Cardiopres to continuously monitor blood pressure for 24 hours, and two Actiwatches (hip/waist & ankle) for monitoring activity levels over 48 hours, André started the ambulatory monitoring part of the ICV assessment. During the first 24 hrs (while all devices are worn), ten minutes of quiet, resting breathing are timelined to collect data for a specific analysis. The nominal exercise includes at least 10 minutes at a heart rate ≥120 bpm (beats per minute). After 24 hrs, the Cardiopres is doffed and the HM2 HiFi CF Card and AA Battery are changed out to allow continuation of the session for another 24 hours. After data collection is complete, the Actiwatches and both HM2 HiFi CF Cards are downloaded to the HRF PC1, while Cardiopres data are downloaded to the EPM (European Physiology Module) Rack and transferred to the HRF PC1 via a USB key for downlink. The sessions are scheduled at or around FD14, FD30, FD75, FD135 and R-15 (there will be fewer sessions if mission duration is less than six months). The FD75 echo scan will include an exercise component with a second scan (subset of the first) completed within 5 minutes after the end of exercise. The primary objective of the accompanying CCISS (Cardiovascular Control on return from the ISS) experiment is to maximize the information about changes in cardiovascular and cerebrovascular function that might compromise the ability of astronauts to meet the challenge of return to an upright posture on Earth.]

The Russian crewmembers had several hours set aside for the standard “symbolic” activities with commemorative items, such as signing & stamping envelopes. Joe, André & Don participated where desired. [The Soyuz-delivered “Symbolic” kits contained 120 Roskosmos envelopes, 60 Simvolika envelopes with the Exp-31 mission logo, a Krasnaya Zvezda newspaper pennant and a St. George’s Ribbon postcard.]

After setting up the G1 camcorder for live coverage of his activities, Joe Acaba supported POIC (Payload Operations integration Center/Huntsville) in conducting the periodic FOMA (Fuel/Oxidizer Management Assembly) calibration on the CIR (Combustion Integrated Rack). [Steps included placing the GIP valve lever in the Down (vent) position to relieve pressures on all four CIR manifolds, then closing the manifold bottle valves. Later in the day Joe opened the valves on all installed manifold bottles during the FOMA calibration, closed the FCF (Fluids & Combustion Facility) upper rack door, turned on two switches, and notified POIC that the rack was prepared for command on RPC (Remote Power Controller).]

Gennady completed the periodic routine maintenance in the SM’s ASU toilette facility, replacing the filter insert (F-V) and the urine receptacle (MP) with new spares.

With the KPT-2 TTM battery freshly charged in the morning, Padalka & Revin used the KPT-2 payload suite of BAR science instruments suite for another 2h session of conducting air temperature and humidity monitoring behind RS panels plus measuring pressurized shell surface temperatures. Before sleeptime, Sergei terminated the recharging of the TTM battery. [KPT-2 monitors problem areas, necessary to predict shell micro-destruction rate and to develop measures to extend station life. Data are copied to the RSE1 laptop for downlink to Earth via OCA, with photographs, and the activities are supported by ground specialist tagup as required. Objective of the Russian KPT-2/BAR science payload is to measure environmental parameters (temperature, humidity, air flow rate) and module shell surface temperatures behind RS panels and other areas susceptible to possible micro-destruction (corrosion), before and after insolation (day vs. night). Piren-V is a video-endoscope with pyrosensor, part of the methods & means being used on ISS for detecting tiny leaks in ISS modules which could lead to cabin depressurization. Besides KPT-2 Piren-V, the payload uses a remote infrared thermometer (Kelvin-Video), a thermohygrometer (Iva-6A), a heat-loss thermoanemometer / thermometer (TTM-2) and an ultrasound analyzer (AU-1) to determine environmental data in specific locations and at specific times. Activities include documentary photography with the NIKON D2X camera and flash.]

FE-3 Acaba reviewed briefing material on CFE VG (Capillary Flow Experiments Vane Gap) experiment procedures and set-up instructions.

FE-5 Kuipers familiarized himself with procedures for inspecting & checking out WOOVs (Water On/Off Valves) 9 & 10 in COL (Columbus Orbital Facility), scheduled for 5/13 & 5/14.

Afterwards, André had ~3 hrs reserved for cleaning IMV (Inter Module Ventilation) components in the JAXA JPM (JEM Pressurized Module), which involved temporary removal and cleaning of the Stbd Fwd Fan and IMV Grille. [FE-5 took dust samples from the fan for fiber and microbial analysis by SSIPC/Tsukuba.]

After visually inspecting and then activating the MSG (Microgravity Science Glovebox) facility earlier in the day (later deactivating it), Don Pettit adjusted the video camera and conducted another session with the BASS (Burning and Suppression of Solids) experiment by conducting several flame test runs on samples, exchanging burner tubes between each test point, exchanging the digital tapes in the MSG VTR1 (Video Tape Recorder 1) & VTR2 and at the end performing a fan calibration to evaluate the air flow with the new fan flow constrictor installed. [BASS uses SLICE equipment but burns solid fuel samples instead of gaseous jets. Each sample will be ignited several times for study. BASS examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. It will also guide strategies for extinguishing accidental fires in micro-G. Results will contribute to the combustion computational models used in the design of fire detection and suppression systems in space and on Earth.]

Joe Acaba had an hour set aside for more ATV-3 cargo operations (unloading & unpacking into stowage) and bag cleaning, i.e., stowing discarded bags and foam packing material in “Edoardo Amaldi”, including a tagup with the ground at ~2:35pm EDT for a status report, attended also by André & Don.

Oleg Kononenko took care of the routine daily servicing of the SOZh system (Environment Control & Life Support System, ECLSS) in the SM. [Regular daily SOZh maintenance consists, among else, of checking the ASU toilet facilities, replacement of the KTO & KBO solid waste containers, replacement of EDV-SV waste water and EDV-U urine containers and filling EDV-SV, KOV (for Elektron), EDV-ZV & EDV on RP flow regulator.]

Sergei Revin conducted the daily IMS (Inventory Management System) maintenance, updating/editing its standard “delta file” including stowage locations, for the regular weekly automated export/import to its three databases on the ground (Houston, Moscow, Baikonur).

Joe performed the quarterly maintenance inspection of the T2 advanced treadmill, requiring about 30 min for inspecting rack composite and isolators plus performing T2 load cell calibration.

FE-3 also completed periodic maintenance of the ARED advanced resistive exercise machine, evacuating its cylinder flywheels to reestablish proper vacuum condition & sensor calibration.

André rebooted SSC9 (Station Support Computer 9) and SSC 18 to return them and the OPSLAN network to their regular state for the new service pack. [Ground-commanded updates of all SSCs with the new service pack are being performed throughout the day.]

Don conducted a check of the MSRR (Material Science Research Rack) facility to verify MSRR and MSL (Material Science Laboratory) stowage configuration.

Before Presleep, FE-6 will turn on the MPC (Multi-Protocol Converter) and start the Ku-band data flow of video recorded during the day to the ground, with POIC (Payload Operations & Integration Center) routing the onboard HRDL (High-Rate Data Link). After about an hour, Don turns MPC routing off again. [This is a routine operation which regularly transmits HD onboard video (live or tape playback) to the ground on a daily basis before sleeptime.]

CDR, FE-1, FE-2 & FE-5 had their regular weekly PMCs (Private Medical Conferences), via S- & Ku-band audio/video, André at ~11:05am, Sergei at ~12:40pm, Oleg at ~2:05pm, Gennady at ~2:25pm EDT.

The crew worked out with their regular 2-hr physical exercise protocol on the CEVIS cycle ergometer with vibration isolation (FE-5), TVIS treadmill with vibration isolation & stabilization (CDR/2x, FE-1, FE-2), ARED advanced resistive exerciser (FE-1, FE-3, FE-6), T2/COLBERT advanced treadmill (FE-3, FE-5, FE-6), and VELO bike ergometer with load trainer (FE-2). [FE-6 is on the special experimental SPRINT protocol which diverts from the regular 2.5 hrs per day exercise regime and introduces special daily sessions involving resistive and aerobic (interval & continuous) exercise, followed by a USND (Ultrasound) leg muscle self scan in COL. No exercise is being timelined for Fridays. If any day is not completed, Don picks up where he left off, i.e., he would be finishing out the week with his last day of exercise on his off day. If any day is not completed, Don picks up where he left off, i.e., he would be finishing out the week with his last day of exercise on his off day.]

No CEO (Crew Earth Observation) targets uplinked for today.

Significant Events Ahead (all dates Eastern Time and subject to change):
————–Six-crew operations—————-
07/01/12 — Soyuz TMA-03M/29S undock/landing (End of Increment 31)
————–Three-crew operations————-
07/15/12 — Soyuz TMA-05M/31S launch – S.Williams (CDR-33)/Y.Malenchenko/A.Hoshide
07/17/12 — Soyuz TMA-05M/31S docking
07/20/12 — HTV3 launch (~10:18pm EDT)
07/22/12 — Progress M-15M/47P undock
07/24/12 — Progress M-15M/47P re-docking
07/30/12 — Progress M-15M/47P undocking/deorbit
07/31/12 — Progress M16M/48P launch
08/02/12 — Progress M16M/48P docking
————–Six-crew operations—————-
09/17/12 — Soyuz TMA-04M/30S undock/landing (End of Increment 32)
————–Three-crew operations————-
10/15/12 — Soyuz TMA-06M/32S launch – K.Ford (CDR-34)/O.Novitsky/E.Tarelkin
10/17/12 — Soyuz TMA-06M/32S docking
————–Six-crew operations————-
11/01/12 — Progress M-17M/49P launch
11/03/12 — Progress M-17M/49P docking
11/12/12 — Soyuz TMA-05M/31S undock/landing (End of Increment 33)
————–Three-crew operations————-
12/05/12 — Soyuz TMA-07M/33S launch – C.Hadfield (CDR-35)/T.Mashburn/R.Romanenko
12/07/12 — Soyuz TMA-07M/33S docking
————–Six-crew operations————-
12/26/12 — Progress M-18M/50P launch
12/28/12 — Progress M-18M/50P docking
03/19/13 — Soyuz TMA-06M/32S undock/landing (End of Increment 34)
————–Three-crew operations————-
04/02/13 — Soyuz TMA-08M/34S launch – P.Vinogradov (CDR-36)/C.Cassidy/A.Misurkin
04/04/13 — Soyuz TMA-08M/34S docking
————–Six-crew operations————-
05/16/13 — Soyuz TMA-07M/33S undock/landing (End of Increment 35)
————–Three-crew operations————-
05/29/13 — Soyuz TMA-09M/35S launch – M.Suraev (CDR-37)/K.Nyberg/L.Parmitano
05/31/13 — Soyuz TMA-09M/35S docking
————–Six-crew operations————-
09/xx/13 — Soyuz TMA-08M/34S undock/landing (End of Increment 36)
————–Three-crew operations————-
09/xx/13 — Soyuz TMA-10M/36S launch – M.Hopkins/TBD (CDR-38)/TBD
09/xx/13 — Soyuz TMA-10M/36S docking
————–Six-crew operations————-
11/xx/13 — Soyuz TMA-09M/35S undock/landing (End of Increment 37)
————–Three-crew operations————-
11/xx/13 — Soyuz TMA-11M/37S launch – K.Wakata (CDR-39)/R.Mastracchio/TBD
11/xx/13 — Soyuz TMA-11M/37S docking
————–Six-crew operations————-
03/xx/14 — Soyuz TMA-10M/36S undock/landing (End of Increment 38)
————–Three-crew operations————-

SpaceRef staff editor.