Status Report

NASA ISS On-Orbit Status 1 February 2011

By SpaceRef Editor
February 1, 2011
Filed under , , ,
NASA ISS On-Orbit Status 1 February 2011
http://images.spaceref.com/news/iss.96.jpg

All ISS systems continue to function nominally, except those noted previously or below.

FE-4 Kondratyev conducted the regular daily early-morning check of the aerosol filters at the Russian Elektron O2 generator which Maxim Suraev had installed on 10/19/09 in gaps between the BZh Liquid Unit and the oxygen outlet pipe (filter FA-K) plus hydrogen outlet pipe (filter FA-V). [Before sleeptime, Dmitri will inspect the filters again, currently a daily requirement per plan, with photographs to be taken if the filter packing is discolored.]

At wake-up, FE-2 Skripochka terminated his 10th experiment session, started last night, for the long-term Russian sleep study MBI-12/Sonokard, taking the recording device from his Sonokard sports shirt pocket and later copying the measurements to the RSE-Med laptop for subsequent downlink to the ground. [Sonokard objectives are stated to (1) study the feasibility of obtaining the maximum of data through computer processing of records obtained overnight, (2) systematically record the crewmember’s physiological functions during sleep, (3) study the feasibility of obtaining real-time crew health data. Investigators believe that contactless acquisition of cardiorespiratory data over the night period could serve as a basis for developing efficient criteria for evaluating and predicting adaptive capability of human body in long-duration space flight.]

As part of the crew’s regular morning inspection tour, FE-1 Kaleri completed the routine checkup of circuit breakers & fuses in the DC1 Docking Compartment. [The monthly checkup in the DC-1, MRM1 & MRM2 looks at AZS circuit breakers on the BVP Amp Switch Panel (they should all be On) and the LEDs (light-emitting diodes) of 14 fuses in fuse panels BPP-30 & BPP-36. MRM2 & MRM1 were derived from the DC-1 concept and are very similar to it.]

FE-5 Nespoli started his 3rd (FD60) suite of sessions with the medical protocol Pro K (Dietary Intake Can Predict and Protect against Changes in Bone Metabolism during Spaceflight and Recovery), with diet logging after the urine pH spot test, for a 5-day period. [For Pro K, there will be five in-flight sessions (FD15, FD30, FD60, FD120, FD180) of samplings, to be shared with the NUTRITION w/Repository protocol, each one with five days of diet & urine pH logging and photography on the last day. The crewmember prepares a diet log and then annotates quantities of food packets consumed and supplements taken. Urine collections are spread over 24 hrs; samples go into the MELFI (Minus Eighty Laboratory Freezer for ISS) within 30 min after collection. Blood samples, on the last day, are centrifuged in the RC (Refrigerated Centrifuge) and placed in MELFI at -80 degC. There is an 8-hr fasting requirement prior to the blood draw (i.e., no food or drink, but water ingestion is encouraged). MELFI constraints: Maximum MELFI dewar open time: 60 sec; at least 45 min between MELFI dewar door openings.]

For covering today’s HTV2 robotics operations, CDR Kelly activated the VSW (Video Streaming Workstation) and SSC-1 (Station Support Computer 1) laptops for downlinking converted NTSC MPEG-2 (Moving Pictures Expert Group 2) “streaming video” packets via U.S. OpsLAN and Ku-band.

FE-1 Alex Kaleri configured the hardware for the Russian MBI-21 PNEVMOKARD experiment, then conducted the 1h15m session, his 4th, which forbids moving or talking during data recording. The experiment is controlled from the RSE-med A31p laptop and uses the TENZOPLUS sphygmomanometer to measure arterial blood pressure. The experiment was then closed out and the test data were downlinked via OCA. [PNEVMOKARD (Pneumocard) attempts to obtain new scientific information to refine the understanding about the mechanisms used by the cardiorespiratory system and the whole body organism to spaceflight conditions. By recording (on PCMCIA cards) the crewmember’s electrocardiogram, impedance cardiogram, low-frequency phonocardiogram (seismocardiogram), pneumotachogram (using nose temperature sensors), and finger photoplethismogram, the experiment supports integrated studies of (1) the cardiovascular system and its adaptation mechanisms in various phases of a long-duration mission, (2) the synchronization of heart activity and breathing factors, as well as the cardiorespiratory system control processes based on the variability rate of physiological parameters, and (3) the interconnection between the cardiorespiratory system during a long-duration mission and the tolerance of orthostatic & physical activities at the beginning of readaptation for predicting possible reactions of the crewmembers organism during the their return to ground.]

Oleg Skripochka completed his 5th session with the Russian behavioral assessment TIPOLOGIA (MBI-20), setting up the workstation, connecting equipment, suiting up and launching the program on the RSK1 laptop. [Dmitri assisted in donning the electrode cap, preparing the head for the electrodes, applying electrode gel from the Neurolab-RM2 kit and taking documentary photography. Data were recorded on a PCMCIA memory card and downlinked via OCA comm. MBI-20 studies typological features of operator activity of the ISS crews in long-term space flight phases, with the subject using a cap with EEG (electroencephalogram) electrodes. The experiment, which records EEGs, consists of the Luescher test, “adaptive biological control” training, and the games Minesweeper and Tetris. The Luescher color diagnostic is a psychological test which measures a person’s psychophysical state, his/her ability to withstand stress, to perform and to communicate. It is believed to help uncover the cause of psychological stress, which can lead to physical symptoms. An EEG measures and records the electrical activity of the brain.]

Working on the newly arrived Progress M-09M/41P cargo ship, docked at DC1 nadir, Kaleri dismantled the docking mechanism (StM, Stykovochnovo mekhanizma) between the cargo ship and the DC1. Alex then attached two handles on the Progress external hatch and installed the electronic LKT local temperature sensor commutator (TA251MB) of the BITS2-12 onboard telemetry measurement system and its PZU-1M ROM (read-only memory) in the ship, using recycled boxes from stowage.

FE-1 also unpacked & deployed new Progress 41P-arrived RODF (Russian Operations Data Files) material for several systems/operations books plus a number of CD & DVD files & films.

Skripochka & Kondratyev started the lengthy work of unloading the 41P cargo ship, transferring equipment to the ISS and logging moves in the IMS (Inventory Management System). 41P Unloading was also placed on the discretionary US “Job Jar” task list for Scott, Paolo & Cady.

Dima prepared the FGB and MRM1 Rassvet modules for US cargo transfers from 41P.

FE-6 Coleman enabled the Cupola RWS UOP (Robotic Workstation / Utility Outlet Panel) for power-up in Node-3, installed the CCR (Cupola Crew Restraint) and readied the JEMRMS (Robotic Manipulator System) equipment in the Kibo JPM (JEM Pressurized Module). Cady & Paolo then used the SSRMS (Space Station Remote Manipulator System) to release and extract the EP (Exposed Pallet) from the ULC (Unpressurized Logistics Carrier) in the HTV2’s flank (~5:35am) and hand it over to the JEMRMS (JEM Robotic Manipulator System), operated by Scott Kelly who berthed it to the JEF EFU10 (JEM Exposed Facility / Exposed Facility Unit 10). [The payloads on the EP will be transferred by ground control operations including SPDM (Special Purpose Dexterous Manipulator). Thrusters were inhibited during the transfer activity (2:00am-8:05am EST) due to load constraints.]

The CDR afterwards disconnected the UOP DCP (Utility Outlet Panel/Display & Control Panel) power bypass cable at the Cupola RWS (Robotic Workstation) and uninstalled the CCR (which stabilizes crewmembers during robotarm operations).

Dmitri Kondratyev’s maintenance & service activities today included –
* The periodic inspection of the SRV-K2M Condensate Water Processor’s sediment trap insert (VU) in the SM (Service Module) [the Russian SRVK-2M converts collected condensate into drinking water and dispenses the reclaimed potable water],
* The periodic checkout & performance verification of IP-1 airflow sensors in the various RS (Russian Segment) hatchways [inspected IP-1s are in the passageways PrK (SM Transfer Tunnel)-RO (SM Working Compartment), PrK-Progress, DC1-Progress, PkhO (SM Transfer Compartment) – RO, PkhO-DC1, PkhO-FGB PGO, PkhO-MRM2, FGB GA-MRM1, FGB PGO-FGB GA, and FGB GA-Node-1],
* The regular inspection of the replaceable half-coupling of the 4GB4 hydraulic unit of the KOB-2 (Loop 2) of the Russian SOTR Thermal Control System, checking for coolant fluid hermeticity (leak-tightness),
* Setting up the Russian DZZ-12 RUSALKA (“Mermaid”) hardware at SM window #9 for another sun-glint observation session, using the hand-held spectrometer (without use of the TIUS three-stage rate sensor), synchronized with the coaxially mounted NIKON D2X camera for taking snapshots, and later downloaded the data to laptop RS1 for subsequent downlink via OCA. The equipment was then torn down and stowed away [RUSALKA is a micro spectrometer for collecting detailed information on observed spectral radiance in the near IR (Infrared) waveband for measurement of greenhouse gas concentrations in the Earth atmosphere],
* The routine daily servicing of the SOZh system (Environment Control & Life Support System, ECLSS) in the SM [regular daily SOZh maintenance consists, among else, of checking the ASU toilet facilities, replacement of the KTO & KBO solid waste containers, replacement of EDV-SV waste water and EDV-U urine containers and filling EDV-SV, KOV (for Elektron), EDV-ZV & EDV on RP flow regulator.]

Kaleri performed periodic service of the RS (Russian Segment) radiation payload suite “Matryoshka-R” (RBO-3-2), initializing & re-deploying new Bubble dosimeters detectors and verifying proper function of the setup with the LULIN-5 electronics box. [A total of eight Bubble dosimeter detectors (A21-A28) were initialized in the Bubble dosimeter reader in the SM and positioned at new exposure locations. The deployment locations of the detectors were photo-documented with the NIKON D2X camera and also reported with initialization data to TsUP via log sheet via OCA. The complex Matryoshka payload suite is designed for sophisticated radiation studies. Note: Matryoshka is the name for the traditional Russian set of nested dolls],

Later, Sasha completed another data collection session for the psychological MBI-16 Vzaimodejstvie (“Interactions”) program, accessing and completing the computerized study questionnaire on the RSE-Med laptop and saving the data in an encrypted file. It was his 8th run. [The software has a “mood” questionnaire, a “group & work environment” questionnaire, and a “critical incidents” log. Results from the study, which is also mirrored by ground control subjects, could help to improve the ability of future crewmembers to interact safely and effectively with each other and with Mission Control, to have a more positive experience in space during multi-cultural, long-duration missions, and to successfully accomplish mission activities.]

Oleg used the standard ECOSFERA equipment, set up yesterday, to conduct microbial air sampling runs for the MedOps SZM-MO-21 experiment, with the POTOK Air Purification System temporarily powered down, taking Kit 2 samples from cabin surfaces along with samples from crewmembers for sanitation and disease studies. The Petri dishes with the samples were then stowed in the KRIOGEM-03 thermostatic container and subsequently packed for return to Earth. Part 1 of MO-21 protocol was done yesterday. [The equipment, consisting of an air sampler set, a charger and power supply unit, provides samples to help determine microbial contamination of the ISS atmosphere, specifically the total bacterial and fungal microflora counts and microflora composition according to morphologic criteria of microorganism colonies.]

With the HTV2 as new ISS element, Paolo Nespoli updated the Emergency Books for the configuration change.

Paolo then retrieved the two CSA-O2 instruments (CSA-Oxygen, #1041, #1045) from the Soyuz TMA-01M/24S and calibrated them in the Lab for their weekly checkout, taking readings, then turning them off again and returning them to 24S. [The oxygen sensors in the CSA-O2s (and CSA-CPs/CSA-Combustion Products) have exceeded their shelf life due to resupply delays. The weekly calibration checks permit continued use of these units until new ones arrive on ULF-5.]

Working on the newly transferred Japanese KOBAIRO (“stork”) rack in the JPM, Cady Coleman removed the launch locks on the front panel of the GHF SCAM (Gradient Heating Furnace / Sample Cartridge Automatic Exchange Mechanism). [GHF is a vacuum furnace that contains three heating blocks. Their positions and temperatures can be independently controlled, and various temperature profiles can be configured. This facility will mainly be used for high quality crystal growth experiments using unidirectional solidification.]

Also transferred from the HTV2 yesterday (instead of today as planned) was the MSPR (Multipurpose Small Payload Rack) which provides a platform to accommodate small experiments. [Electrical power and data communications will be supplied to the individual experiments inserted in the MSPR.]

Kelly changed out the transmitter battery of his HRM (Heart Rate Monitor), which had malfunctioned.

Scott “degassed” two more CWC-Is (Contingency Water Containers-Iodine, #2004, #2016), to remove any free air bubbles that may have been ingested since its last use. This has become necessary since the water in the bag is reaching its expiration date and needs to be used. [The traditional procedure for “degassing” the container by first draining, then refilling it with a fully charged water CWC was replaced in 2004 by a rather ingenious new procedure developed and checked out on the KC-135 aircraft flying zero-G parabolas at JSC/Houston: Essentially, it involves the crewmember himself centrifuging the selected container by holding it away from the body and applying a slow rotation of ~15 rpm to himself, to separate air and water in the bag through centrifugal force, while simultaneously squeezing out the air by cinching down on bungee cords wrapped around the CWC.]

The CDR also set up the NFPE (nitrogen fill & purge equipment) for MELFI-2 (Minus Eighty Laboratory Freezer for ISS 2) by configuring valves in the equipment.

FE-5 Nespoli performed the periodic check of the CEVIS exercise machine’s four isolators.

Before sleeptime, Sasha Kaleri will prepare the Russian MBI-12 payload and start his 10th Sonokard experiment session, using a sports shirt from the Sonokard kit with a special device in the pocket for testing a new method for acquiring physiological data without using direct contact on the skin. Measurements are recorded on a data card for return to Earth. [Sonokard objectives are stated to (1) study the feasibility of obtaining the maximum of data through computer processing of records obtained overnight, (2) systematically record the crewmember’s physiological functions during sleep, (3) study the feasibility of obtaining real-time crew health data. Investigators believe that contactless acquisition of cardiorespiratory data over the night period could serve as a basis for developing efficient criteria for evaluating and predicting adaptive capability of human body in long-duration space flight.]

At ~1:55am, Paolo powered up the SM’s amateur radio equipment (Kenwood VHF transceiver with manual frequency selection, headset, & power supply) and at 2:00am conducted a ham radio session with students at College Joseph Chassigneux, Vinay, France.

FE-1, FE-2, FE-4 & FE-5 had their weekly PMCs (Private Medical Conferences), via S- & Ku-band audio/video, Paolo at ~10:00am, Dmitri at ~11:00am, Oleg at ~11:25am, Alex at ~11:50am EST.

The crewmembers worked out with their regular 2-hr physical exercise on the CEVIS cycle ergometer with vibration isolation (CDR, FE-5, FE-6), TVIS treadmill (FE-1, FE-2, FE-4), ARED advanced resistive exerciser (CDR, FE-5, FE-6) and VELO ergometer bike with bungee cord load trainer (FE-1, FE-2, FE-4).

Significant Events Ahead (all dates Eastern Time and subject to change):
————–Six-crew operations————-
02/15/11 — ATV-2 “Johannes Kepler” launch (5:09pm)
02/19/11 — Progress M-07M/39P undock
02/21/11 — Russian EVA-28 (2/16??)
02/23/11 — ATV-2 “Johannes Kepler” docking (SM aft)
02/24/11 — STS-133/Discovery launch ULF5 (ELC4, PMM)
02/24/11 — HTV2 unberthing (Node-2 nadir)
03/16/11 — Soyuz TMA-01M/24S undock/landing (End of Increment 26)
————–Three-crew operations————-
04/19/11 — STS-134/Endeavour launch ULF6 (ELC-3, AMS)
04/27/11 — Progress M-10M/42P launch
05/30/11 — Soyuz TMA-22/27S launch – M. Fossum (CDR-29)/S. Furukawa/S. Volkov
06/01/11 — Soyuz TMA-22/27S docking (MRM1)
————–Six-crew operations————-
06/04/11 — ATV-2 “Johannes Kepler” undock (SM aft)
06/21/11 — Progress M-11M/43P launch
06/23/11 — Progress M-11M/43P docking (SM aft)
06/28/11 — STS-135/Atlantis ULF7 (MPLM)
08/29/11 — Progress M-11M/43P undocking
08/30/11 — Progress M-12M/44P launch
09/01/11 — Progress M-12M/44P docking (SM aft)
09/16/11 – Soyuz TMA-21/26S undock/landing (End of Increment 28)
————–Three-crew operations————-
09/30/11 — Soyuz TMA-23/28S launch – D.Burbank (CDR-30)/A.Shkaplerov/A.Ivanishin
10/02/11 – Soyuz TMA-23/28S docking (MRM2)
————–Six-crew operations————-
10/25/11 — Progress M-10M/42P undocking
10/26/11 — Progress M-13M/45P launch
10/28/11 — Progress M-13M/45P docking (DC-1)
11/16/11 — Soyuz TMA-22/27S undock/landing (End of Increment 29)
————–Three-crew operations————-
11/30/11 — Soyuz TMA-24/29S launch – O.Kononenko (CDR-31)/A.Kuipers/D.Pettit
12/02/11 — Soyuz TMA-24/29S docking (MRM1)
————–Six-crew operations—————-
12/??/11 — 3R Multipurpose Laboratory Module (MLM) w/ERA – on Proton.
12/26/11 — Progress M-13M/45P undock
12/27/11 — Progress M-14M/46P launch
12/29/11 — Progress M-14M/46P docking (DC-1)
03/05/12 — Progress M-12M/44P undock
03/16/12 — Soyuz TMA-23/28S undock/landing (End of Increment 30)
————–Three-crew operations————-
03/30/12 — Soyuz TMA-25/30S launch – G.Padalka (CDR-32)/J.Acaba/K.Valkov
04/01/12 — Soyuz TMA-25/30S docking (MRM2)
————–Six-crew operations—————-
05/15/12 — Soyuz TMA-24/29S undock/landing (End of Increment 31)
————–Three-crew operations————-
05/29/12 – Soyuz TMA-26/31S launch – S.Williams (CDR-33)/Y.Malenchenko/A.Hoshide
05/31/12 – Soyuz TMA-26/31S docking
————–Six-crew operations—————-
09/09/12 — Soyuz TMA-25/30S undock/landing (End of Increment 32)
————–Three-crew operations————-
09/23/12 — Soyuz TMA-27/32S launch – K.Ford (CDR-34)/O. Novitskiy/E.Tarelkin
09/25/12 – Soyuz TMA-27/32S docking
————–Six-crew operations————-
10/07/12 — Soyuz TMA-26/31S undock/landing (End of Increment 33)
————–Three-crew operations————-
11/xx/12 — Soyuz TMA-28/33S launch – C.Hadfield (CDR-35)/T.Mashburn/R.Romanenko
11/xx/12 – Soyuz TMA-28/33S docking
————–Six-crew operations————-
03/xx/12 — Soyuz TMA-27/32S undock/landing (End of Increment 34)
————–Three-crew operations————-
03/xx/12 – Soyuz TMA-29/34S launch.
03/xx/12 – Soyuz TMA-29/34S docking
————–Six-crew operations————-

SpaceRef staff editor.