Status Report

NASA ISS On-Orbit Status 07 July 2012

By SpaceRef Editor
July 7, 2012
Filed under , , ,
NASA ISS On-Orbit Status 07 July 2012
NASA ISS On-Orbit Status 07 July 2012

ISS On-Orbit Status 07/07/12

All ISS systems continue to function nominally, except those noted previously or below. Saturday – Crew off duty.

At wakeup, Gennady Padalka performed the routine inspection of the SM (Service Module) PSS Caution & Warning panel as part of regular Daily Morning Inspection.

The three crewmembers joined in conducting the regular weekly three-hour task of thorough cleaning of their home, including COL (Columbus Orbital Laboratory) and Kibo JPM (JEM Pressurized Module). [“Uborka”, usually done on Saturdays, includes removal of food waste products, cleaning of compartments with vacuum cleaner, damp cleaning of the SM dining table, other frequently touched surfaces and surfaces where trash is collected, as well as the sleep stations with a standard cleaning solution; also, fan screens and grilles are cleaned to avoid temperature rises. Special cleaning is also done every 90 days on the HEPA (high-efficiency particulate air) bacteria filters in the Lab.]

As part of Uborka house cleaning, Sergei & Gennady also completed regular weekly maintenance inspection & cleaning of fan screens in the FGB (TsV2) plus Group E fan grilles in the SM (VPkhO, FS5, FS6, VP), and the grilles of the BMP Harmful Contaminants Removal System and SKV air conditioner in the SM.

The CDR handled the routine daily servicing of the SOZh system (Environment Control & Life Support System, ECLSS) in the SM. [Regular daily SOZh maintenance consists, among else, of checking the ASU toilet facilities, replacement of the KTO & KBO solid waste containers, replacement of EDV-SV waste water and EDV-U urine containers and filling EDV-SV, KOV (for Elektron), EDV-ZV & EDV on RP flow regulator.]

FE-3 Acaba conducted the regular (~weekly) inspection & maintenance, as required, of the CGBA-4 (Commercial Generic Bioprocessing Apparatus 4) and CGBA-5 payloads in their ERs (EXPRESS Racks) at Lab O2 & O1, focusing on cleaning the muffler air intakes.

Deferred from yesterday, Joe took closeout photos of all the lockers in the P1 & O1 racks in the ATV3 (Automated Transfer Vehicle 3). [With its fan nonfunctional but IMV (Intermodule Ventilation) on, smoke detection & CO2 monitoring is temporarily a crew function.]

Also deferred from yesterday, Gennady conducted another transfer of water from Tank 1 of the ATV3 WDS (Water Delivery System) to fill an EDV-RP container via the P-P water transfer hose with BP pumping equipment. [ATV3 WDS Tank 1 contained ~90L.]

Working in the JAXA JPM (JEM Pressurized Module), Acaba configured HRMS (High Rate Data Multiplexer & Switcher) patch cable connections for the MCE (Multi-mission Consolidated Equipment) arriving with the HTV3 (H-2 Transfer Vehicle) and the MSPR (Multi-purpose Small Payload Rack).

While in the Kibo lab, Joe also checked out its fire indicator illuminators to verify that the fire indication lights in the JLP (JEM Logistics Pressurized Segment), JEM RMS (Robotic Manipulator System), ISPRs (International Standard Payload Racks) A2, A3, A4, F1 and F5 are all functioning properly.

The crew worked out with their regular 2-hr physical exercise protocol on the CEVIS cycle ergometer with vibration isolation (FE-3), TVIS treadmill with vibration isolation & stabilization (CDR, FE-2), ARED advanced resistive exerciser (CDR, FE-3), and VELO ergometer bike with load trainer (FE-2).

Tasks listed for Revin & Padalka on the Russian discretionary “time permitting” job for today were –
• A ~30-min. session for Russia’s EKON Environmental Safety Agency, making observations and taking KPT-3 aerial photography of environmental conditions on Earth using the NIKON D3X camera with the RSK-1 laptop, and
• More preparation & downlinking of reportages (written text, photos, videos) for the Roskosmos website to promote Russia’s manned space program (max. file size 500 Mb).

Kurs-P Test: At 3:17am-3:35am EDT, Moscow conducted a standard test of the Kurs-P passive radio navigation transponder on the FGB, run from the pre-positioned CSB test program during RGS LOS (Russian Groundsite Loss of Signal).

Thanks: Thank you to the crew for using their personal time taking photos to lend their support to a young man in Dallas with terminal cancer.

Weekly Science Update (Expedition Thirty-Two – Week 1).

2D NANO Template (JAXA): Mission completed.

3D SPACE: Complete.

ALTCRISS (Alteino Long Term monitoring of Cosmic Rays on the ISS): Complete.

ALTEA SHIELD Shielding (NASA/ASI): To date, 27 cumulative days of measurements have been performed. Session#1 must be pursued for a minimum of 40-60 cumulative days. [Cosmic radiation consists of very small, atomic-sized particles that are flying around in space at tremendous speeds. Their energy is so high that these particles, like tiny bullets, can permeate through the complete structure of the ISS. Exposure of astronauts to cosmic radiation is risky from a medical point of view. The best way to protect our astronauts against cosmic radiation is to build the complete ISS from lead! This would solve the problem but the enormous mass can impossibly be launched into space. Therefore different materials, much lighter than lead, are being tested to be used as shielding materials. Two of those will be investigated in the ALTEA-SHIELD experiment. The effectiveness of the shielding materials will be measured on board by a set of special radiation detectors. Some detectors will be covered with tiles made of shielding materials, some others will not. We are looking forward to find out what difference it will make!”]

Amine Swingbed (NASA): No report.

AMS-02 (Alpha Magnetic Spectrometer): No report.

APEX (Advanced Plant Experiments on Orbit) -Cambium: No report.

APEX-TAGES (Transgenic Arabidopsis Gene Expression System): No report.

Asian Seed 2010 (JAXA): Returned on ULF6.

BASS (Burning and Suppression of Solids, NASA): This week we performed five tests. In the first, Joe Acaba flipped the SIBAL sample (cotton-fiberglass fabric) so that we could examine opposed-flow flame spread. The igniter was positioned so that the flame would spread into the 10 cm/s air stream. The sample ignited and burned to completion. This test is significant because the SIBAL sample is unable to sustain downward flame spread in 1-g (the opposed flow configuration is equivalent to downward spread on Earth). The flame shape is very stable as it spreads across the sample indicating that steady state is reached. Next we examined the combustion of a candle sample. The candle measures about 2.5 cm in length and 0.5 cm in diameter. It is enclosed in a ceramic tube. The type of wax used is “Japan wax” which tends to be the least sooting compared to other waxes. The candle was mounted so that the wick pointed into the oncoming flow, and the air flow speed was varied. The purpose was to determine the best camera settings for subsequent tests. A total of three ignitions were achieved before the candle ran out of wax. The flame was generally yellow except at the very lowest flow speeds (less than 1 cm/s). In the fifth and final test of the day, we re-ignited a previously-burned flat acrylic sample in a 5 cm/s air flow. A very small dim blue flame (1-cm in length) slowly spread across the sample before going out by itself after around 90 s. A fan calibration indicated the flow was nominal. We were a bit concerned that the candle tests would yield wax aerosols which might plug the exit screen of the BASS hardware, but so far this does not appear to be an issue.

BCAT-6 (Binary Colloidal Alloy Test 6): No report. [Colloids are particles as small as a few tens of nanometers (a thousandth of a thousandth of a millimeter) that are suspended in a medium, usually a liquid or a gas. The name “colloid” comes from the Greek word for “glue”, and expresses very important properties of colloids: when small and light enough, particles can be influenced in their behavior by forces of electromagnetic origin, and make them stick together, or repel each other depending on the configuration. Colloids are widely studied in science because the forces between particles can be controlled and tuned and because particles, while being small enough to be influenced by such forces, are big and slow enough to be seen with a relatively simple and inexpensive laboratory instrument like a microscope. This is why colloids are often studied as model for molecular systems (like standard gases or liquids) where molecules, the individual constituents, are much smaller than colloids and cannot be seen with light. As mentioned, forces between colloids can be tuned giving rise to a rich variety of phenomena. One of them is aggregation, which is when particles stick together and tend to form structures. Among the many ways to induce particle aggregation, one allows to do so by controlling the temperature of the solution in which the particles are immersed, thanks to very weak forces called “critical Casimir forces” that have been predicted more than 30 years ago but just partially verified in experiments. The objective of SODI COLLOID is to measure such forces and produce a controlled aggregation of tiny plastic particles. This would allow to shed light on critical Casimir forces and to make a step towards the fabrication of new nanostructured materials with remarkable optical properties for industrial applications.]

BLB (Biolab, ESA): No report.

BIORHYTHMS (JAXA, Biological Rhythms): No report.

BISE (CSA, Bodies in the Space Environment): No report.

BISPHOSPHONATES: No report.

BXF-Facility (Boiling eXperiment Facility, NASA): No report.

BXF-MABE (Microheater Array Boiling Experiment, NASA): No report.

BXF-NPBX (Pool Boiling Experiment, NASA): No report.

CARD (Long Term Microgravity Model for Investigating Mechanisms of Heart Disease, ESA): No report.

CARDIOCOG-2: Complete.

CB (JAXA Clean Bench): No report.

CBEF-2 (JAXA Cell Biology Experiment Facility)/SPACE SEED: No report.

CCISS (Cardiovascular & Cerebrovascular Control on Return from ISS): No report.

CERISE (JAXA): No report.

CCF (Capillary Channel Flow, NASA): No report.

CFE-2 (Capillary Flow Experiment 2, NASA): No report.

CFS-A (Colored Fungi in Space-A, ESA): No report.

CSI-5/CGBA-5 (CGBA Science Insert #5/Commercial Generic Bioprocessing Apparatus 5): No report.

CGBA-2 (Commercial Generic Bioprocessing Apparatus 2): Complete.

CIR (Combustion Integrated Rack), MDCA/Flex: No report.

Commercial (Inc 23&24, JAXA): No report.

Commercial (Inc 25 & 26, JAXA): No report.

CSAC (Chip-Scale Atomic Clock, SPHERES): No report.

CSLM-2 (Coarsening in Solid-Liquid Mixtures 2): No report.

CsPins (JAXA): No report.

CubeLab: No report.

CW/CR (Cell Wall/Resist Wall) in EMCS (European Modular Cultivation System): Complete.

DECLIC-ALI (Device for the Study of Critical Liquids & Crystallization-ALICE-like, CNES/NASA): No report.

DomeGene (JAXA): Complete.

DOSIS (Dose Distribution Inside ISS, ESA): Nominal science acquisition with active and passive dosimeters inside Columbus. Second monthly data downlink was successfully performed on 7/4. Awaiting science team feedback.

EarthKAM (Earth Knowledge Acquired by Middle School Students): No report.

EDR (European Drawer Rack, ESA): No report.

EKE (Endurance Capacity by Gas Exchange and Heart Rate Kinetics During Physical Training, ESA): No report.

ELITE-S2 (Elaboratore Immagini Televisive – Space 2): Planned.

EMCS (European Modular Cultivation System): “Thanks, André, for your help with the EMCS Relief Valves check.”

ENERGY (ESA): No report. [Background: In the ENERGY experiment, astronauts are invited to participate in a study that aimed to evaluate how much food is needed for astronauts during long-term space missions. To do so, the science team will measure every component or variable of the astronaut’s energy expenditure reflecting his energy needs. Those variables will be measured twice: up to 4 months before flight and after at least 3 months in space but 3 weeks before landing. The changes in the astronaut’s energy balance and expenditure will be measured, which will help in deriving an equation for energy requirements in weightlessness. This will contribute to planning adequate, but not excessive cargo supplies for food.]

ENose (Electronic Nose): No report.

EPM (European Physiology Module): Rack activated in support of ENERGY armband data transfers.

EPO (Educational Payload Operations, NASA) (Eye in the Sky; Sleep 2): No report.

EPO (Educational Payload Operations, NASA) (Sesame Street): No report.

EPO (Educational Payload Operations, NASA) (Kids in Micro-G): No report.

EPO (Educational Payload Operations, NASA) (Earth/Moon/Mars Demo): No report.

EPO (Educational Payload Operations, NASA) (Space Sports): No report.

EPO (Educational Payload Operations, NASA) (ISS Orbit): No report.

EPO (Educational Payload Operations, ESA): No report.

EPO CONVECTIONS (ESA): “No report.

EPO MISSION X (ESA): No report.

EPO Spaceship Earth (ESA): No report.

EPO LES-2 (ESA): No report.

EPO GREENHOUSE (ESA): No report.

EPO 3-min Video (JAXA): No report.

EPO J-Astro Report (JAXA): No report.

EPO Dewey’s Forest (JAXA): Closed out on 3/15.

EPO Space Clothes (JAXA): Complete.

EPO Hiten (Dance, JAXA): No report.

EPO Lego Bricks (NASA, JAXA): No report.

EPO Moon Score (JAXA): No report.

EPO OpticSphere & ISSOrbit-Demo (NASA): No report.

EPO Kibo Kids Tour (JAXA): Complete.

EPO Paper Craft (Origami, JAXA): No report.

EPO Poem (JAXA): No report.

EPO-5 SpaceBottle (Message in a Bottle, JAXA): No report.

EPO-6 Spiral Top 2 (JAXA): No report.

EPO-7 Doctor Demo (JAXA): No report.

EPO-7 Green Tea Preparation (JAXA): No report.

EPO-7 Ink Ball (JAXA): No report.

EPO-7 Video (JAXA):

EPO-7 Try Zero-G (JAXA): No report.

EPO-8 Space Sakura (JAXA): No report.

EPO-8 Space Musical Instruments (JAXA): No report.

ERB-2 (Erasmus Recording Binocular, ESA): [ERB-2 aims are to develop narrated video material for various PR & educational products & events, including a 3D interior station view.] No report.

ETD (Eye Tracking Device): Completed.

FACET-2 (JAXA): No report.

FERULATE (JAXA): No report.

FIR/LMM/CVB (Fluids Integrated Rack / Light Microscopy Module / Constrained Vapor Bubble): No report.

Fish Scales (JAXA): Completed on FD7/ULF-4 and returned on STS-132.

FOAM STABILITY EPO (ESA): No report.

FOCUS: No report.

FSL (Fluid Science Laboratory, ESA): No report.

FWED (Flywheel Exercise Device, ESA): No report.

GENARA-A (Gravity Regulated Genes in Arabidopsis A/ESA): No report.

GEOFLOW-2 (ESA): Experiment completed! [Background: Everybody is familiar with liquids. In an average day we get to use, handle or drink water or other liquids. And everybody knows how fluids (that is liquids and gases) behave: when subjected to a net force, may be pressure, a temperature difference or gravity, they can move freely. Scientists have been studying how fluids move for centuries, and managed to write mathematical formulas that can describe and predict such movements. Unfortunately, these equations are extremely complex and only approximate solutions are known. As a result, our quantitative understanding of fluid movement is just partial. This is especially true for natural phenomena where the forces can be enormous and unpredictable, like in oceans or in the atmosphere, or the interior of the earth, where rocks are exposed to pressures and temperatures so incredibly high that they slowly move and adapt their shape. That is, over hundreds of years rocks flow just like a very viscous liquid. Scientists try to study such flows but cannot observe them directly due to the fact that they take place deep beneath the surface of our planet. The only way is to have computers simulating those movements starting from the equations, but how to check whether computers are correct? This is what Geoflow II is trying to answer on board the International Space Station. Geoflow II is a miniature planet that has some of its essential ingredients: a fluid can freely move inside a spherical container that rotates, has temperature differences and has a simulated gravity directed towards the centre just like in a real planet. By taking pictures of the fluid movements, scientists are able to understand the essential characteristics of the flows and determine whether computer simulations are correct or whether they need to be refined and improved towards a better understanding of the elusive movements that take place inside our planet.]

HAIR (JAXA): No report.

HDTV System (JAXA): No report.

Hicari (JAXA): No report.

Holter ECG (JAXA): No report.

HQPC (JAXA): No report.

HREP (HICO/Hyperspectral Imager for the Coastal Ocean & RAIDS/Remote Atmospheric & Ionospheric Detection System/JAXA): HICO has taken 5872 images to-date. The most recent HICO images include parts of Washington State’s Puget Sound, parts of California’s coastline, and the Amazon River Plume. RAIDS is continuing to collect secondary Science data including nighttime atmospheric disk photometry, spectra and temperatures. Extreme Ultra Violet airglow spectroscopy and optical contamination studies will also be performed.

HRF-1 (Human Research Facility 1, NASA): No report.

HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions/JAXA): No report.

ICE CRYSTAL (JAXA): Complete.

ICV (Integrated Cardiovascular): No report.

IMMUNO (Neuroendocrine & Immune Responses in Humans During & After Long Term Stay at ISS): No report.

INTEGRATED IMMUNE: No report.

InSPACE-2 (Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions 2): No report.

IRIS (Image Reversal in Space, CSA): No report.

ISS Amateur/Ham Radio: “Thank you, Joe, for a successful contact with the Cirqiniq Summer Camp, Kuujjuaq, Quebec (Nunavik), Canada on 7/4. Current ISS Ham stats: Inc 31/32 count=12; Exp 30 crew count=25 (Kuipers=10; Pettit=13; Kononenko=2); Exp 31 crew count=5 (Padalka=1; Revin=1; Acaba=3); Events for 2012=45; Events for Program=735.”

ISSAC (ISS Agricultural Camera, NASA): No report.

IV Gen (Intravenous Fluids Generation): No report.

JOURNALS (Behavioral Issues Associated with Isolation and Confinement, NASA): “The PI would like to thank you for your recent Journal entries. He has expressed that you’re doing a great job and how much he appreciates the diligence you’re showing in completing your entries. He looks forward to the next downlink of your entries.” [Studies conducted on Earth have shown that analyzing the content of journals and diaries is an effective method for identifying the issues that are most important to a person. The method is based on the reasonable assumption that the frequency that an issue or category of issues is mentioned in a journal reflects the importance of that issue or category to the writer. The tone of each entry (positive, negative, or neutral) and phase of the expedition also are variables of interest. Study results will lead to recommendations for the design of equipment, facilities, procedures, and training to help sustain behavioral adjustment and performance during long-duration space expeditions to the ISS, asteroids, the Moon, Mars, and beyond. Results from this study could help to improve the behavioral performance of people living and working under a variety of conditions here on Earth.]

KID/KUBIK6: No report.

KUBIK 3/6 (ESA): No report.

LMM/PACE-2 (Light Microscopy Module / Preliminary Advanced Colloids Experiment): No report.

LOCAD-PTS (Lab-on-a-Chip Application Development-Portable Test System): No report.

MAMS (Microgravity Acceleration Measurement System, NASA): No report.

Marangoni Exp. (JAXA): Ground activities: On 7/2-7/5, MEIS5-2, 5-3, 5-4, and 5-5 were successfully completed.

Marangoni DSD – Dynamic Surf (JAXA): Payload name was change from Marangoni DSD to Dynamic Surf.

Marangoni UVP (JAXA): No report.

MARES (Muscle Atrophy Research & Exercise System, ESA/NASA): No report.

Matryoshka-2 (RSA): No report.

MAXI (Monitor of All-sky X-ray Image, JAXA): External payload. Continuing telemetry monitoring. VSC Imagery was downloaded via ground activity on 7/2 and 7/4.

MDCA/Flex-2: On 7/2 and 7/4, we performed MDCA/FLEX-2 Quiescent test points using 100% decane fuel. The Quiescent test points investigate diffusive flame behavior, extinction mechanisms, and sooting phenomena in a wide range of combustion chamber atmospheres. The results from these test points will help to improve fire safety in manned space vehicles and will lead to greater fuel efficiency of liquid-fuel engines. During these two days, we performed sixteen test points at four different chamber atmospheres all at reduced pressure (i.e., 0.5 atm). We started with 25% oxygen (nitrogen served as the balance diluent) and reduced the oxygen percentage in a stepwise fashion, with the final atmosphere containing only 14% oxygen. All fuel droplets were freely deployed (i.e., not tethered on the fiber). Preliminary observations show a threshold droplet size of Do = 5.5 mm for transition of extinction modes (radiative versus diffusive) in high oxygen concentrations (i.e., 25% O2) and a threshold droplet size of Do = 2.0 mm for low oxygen concentrations (i.e., 14% O2). Radiative extinction is flame extinction caused by excessive radiative energy loss from the flame, and it occurs at relatively larger droplet and flame sizes. Diffusive extinction is flame extinction caused by an insufficient time for fuel and oxygen to react, and it occurs at relatively smaller droplet and flame sizes.

MEIS (Marangoni Experiment for ISS) in JAXA FPEF (Fluid Physics Experiment Facility): No report.

MELFI (Minus Eighty Laboratory Freezer for ISS, NASA): “Joe: Thanks for all the effort on the EU R&R. MELFI1 is cooling nominally.”

Microbe-2 (JAXA): Sample returned by ULF6.

Micro-G Clay (JAXA EPO): Complete.

Miscible Fluids in Microgravity (MFMG): No report.

MISSE-8 (Materials ISS Experiment 8): MISSE-8 ReflectArray, HyperX and SEUXSE-II experiments continue with nominal operations. PASCAL is performing nominal commanding that produced IV curves of the solar cells. IV curves are plots of the current versus voltage for solar cells and tell a lot about how these are performing. The SpaceCube experiment is running code for new radiation hardening by software.

MMA (JAXA/Microgravity Measurement Apparatus): No report.

MPAC/SEED (JAXA): No report.

MSG-SAME (Microgravity Science Glovebox-Smoke Aerosol Measurement Experiment): No report.

MSPR (Multi Purpose Small Payload Rack, JAXA): On 6/13, Don completed greasing the QDs of the MSPR Work Volume and Combustion Chamber QD successfully, thank you very much.

MSL (Materials Science Laboratory, ESA): Three processed Sample Cartridge Assemblies (SCA’s) have been returned with SpX-D.

MTR-2 (Russian radiation measurements): Passive dosimeters measurements in DC-1 “Pirs”.

MULTIGEN-1: Completed.

MYCO 3 (JAXA): On 9/22, Mike and Satoshi completed sample collection.

MyoLab (JAXA): Completed on 4/20.

NanoRacks (NASA): No report.

NANOSKELETON (Production of High Performance Nanomaterials in Microgravity, JAXA): No report.

NEURORAD (JAXA): No report.

NEUROSPAT (ESA/Study of Spatial Cognition, Novelty Processing and Sensorimotor Integration): No report. [During microgravity stay, the human body goes through multitude of physiological changes in order to accommodate to the new environment. As the brain is a master organ where major crucial processes take place, it is fundamental to understand how it manages adaptation for living in Space. One of the main purposes of Neurospat (NES) experiment is to focus on how microgravity environment influences cerebral activity of astronauts aboard ISS. For this, the global electrical activity of the brain of the astronaut is measured thanks to electroencephalogram (EEG) technique, while he or she is executing specific tasks through a computer as if it was a kind of videogame. In practice, the astronaut is wearing a specially equipped cap with passive, gel filled electrodes that are in contact with his/her scalp while he or she is performing the specific tasks that we have designed. These are visual-orientation perception and visuo-motor tracking tasks that may be encountered on a daily basis. The tasks allow the study of 5 cognitive processes: Perception, Attention, Memorization, Decision and Action. Besides there are also task-irrelevant images that are showed to the astronaut in order to assess how well he or she processes novel visual stimuli. The electrodes all over the scalp are linked to sensitive amplifiers that allow us to measure small variations of electrical potential between different regions of the scalp. These signals are in turn used to estimate activity in the cerebral cortex related to the task being performed. Also, they serve to identify the mental processes associated with these tasks and to localize in the brain the sources of the underlying neural activity. After analysis of the data we can better understand whether the novel environment of microgravity accompanied by a multitude of stressors may place an increased load on the cognitive capacity of the human brain and whether the sensory signals and motor responses of astronauts are processed and interpreted differently because a new reference frame.]

NightPod (ESA): NightPod images have been presented in a news blog on the ESA PromISSe website: http://blogs.esa.int/promisse/2012/04/05/nightpod/

NOA-1/-2 (Nitric Oxide Analyzer, ESA): Complete.

NUTRITION w/REPOSITORY/ProK: No report.

ODK (Onboard Diagnostic Kit, JAXA): No report.

PACE-2 (Preliminary Advanced Colloids Experiment 2, NASA): (please see under FIR and LMM/PACE-2.

PADIAC (Pathway Different Activators, ESA): No report.

PADLES (JAXA, Area PADLES 6/7; Passive Area Dosimeter for Lifescience Experiment in Space): Continuing radiation data acquisition of 17 Dosimeters installed inside of JEM. This experiment will continue until 30S return.

PASSAGES (JAXA): No report. [PASSAGES is an experiment about the strategies involved in the perception of the world around us. Seeing correctly the world is necessary to success our gestures, our actions, such as catching a ball, stepping an obstacle on the ground or passing through an opened door. In this experiment, we want to know if the strategies involved on Earth continue to be used when the astronaut is in a weightlessness environment for a long period. To investigate this question, the participant sees 3D scenes on the screen of a laptop such as a video game. The scene is a room with an opening which can vary in width. The task of the participant is to decide if yes or no he or she could pass through the aperture without rotating or scrunching the shoulders. The science team uses typical methods from psychophysics and manipulates several factors to highlight the strategies used by the participant. Then, the science team will compare the performances obtained on ground with those obtained onboard.]

PCDF-PU (Protein Crystallization Diagnostic Facility – Process Unit): No report.

PCG (JAXA, Protein Crystal Growth): Mission completed last week.

PCRF (Protein Crystallization Research Facility) Reconfiguration (JAXA): See PCG.

PLSG (Plant Signaling, NASA/ESA): No report.

PMDIS (Perceptual Motor Deficits in Space): Complete.

POLCA/GRAVIGEN (ESA): Complete.

Portable PFS: “Dear Don and André, P-PFS was used for your THERMOLAB sessions on GMT156/157. Please refer to THERMOLAB.”

Pro K: No report.

RadGene & LOH (JAXA): Complete.

RadSilk (JAXA): No report.

Reaction Self Test (RST/Psychomotor Vigilance Self Test on the ISS): “Joe, thanks for your work with Reaction Self Test, your efforts are greatly appreciated. Thanks especially for your work on the sleep shift sessions, which will continue through 7/6!”

ROALD-2 (Role of Apoptosis in Lymphocyte Depression 2, ESA): No report. [Background: The ROALD-2 experiment studies how the function of T-cells from the immune system are affected by microgravity and spaceflight. T-cells play an important role in controlling the immune systems response to infection. It has previously been shown that the immune response of astronauts can be reduced following spaceflight and it has also been shown that the activation of T-cells in culture is reduced in microgravity. A series of experiments on T-cells and other immune system cells have been previously performed by different scientific teams on Space Shuttle and the ISS over the last 30 years. The data from these individual experiments provides information which together can be used to understand the mechanisms by which gravity or the absence of gravity can affect T-cell function.]

Robonaut (NASA): No report.

RYUTAI Rack (JAXA): No report.

SAIBO Rack (JAXA): No report.

SAMS/MAMS (Space & Microgravity Acceleration Measurement Systems): No report.

SAMPLE: Complete.

SCOF (Solution Crystallization Observation Facility, JAXA): No report.

SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload, JAXA): Continuing telemetry monitoring.

SHD (Space Headaches, ESA): “Thank you Joe for your 7th weekly questionnaire for the Space Headaches experiment!” [Background: The neurologists from Leiden University want to study the question whether the astronauts, while in space, suffer from the headaches. With the help of simple questionnaires the astronauts will register the headache episodes and the eventual accompanying symptoms. The results will hopefully help to characterize the frequency and characteristics of space headache and to develop countermeasure to prevent/minimize headache occurrence during the space flight.]

SHERE II (Shear History Extensional Rheology Experiment II): No report.

SLAMMD (Space Linear Acceleration Mass Measurement Device): No report.

SLEEP (Sleep-Wake Actigraphy & Light Exposure during Spaceflight): No report.

SLICE (Structure & Liftoff In Combustion Experiment): No report. [See under BASS.]

SMILES (JAXA): Continuing telemetry monitoring.

SODI/IVIDIL (Selectable Optical Diagnostics Instrument/Influence of Vibration on Diffusion in Liquids, ESA): No report.

SODI/COLLOID (Selectable Optical Diagnostics Instrument/Colloid): No report.

SODI-DSC (Selectable Optical Diagnostics Instrument/Diffusion & Soret Coefficient, ESA): No report. [Background: Fluids and gases are never at rest. This statement is in apparent contradiction with our experience: when we pour water in a glass and wait until all flows have disappeared and the temperature of the liquid is in equilibrium with that of the room, we see that water appears to be completely at rest. However, if we were able to see the individual molecules of water with a very powerful microscope, we would discover that they are incessantly moving and collide with each other following frantic, random paths even if the liquid appears to be quiescent at naked eye. Scientists are interested in observing and measuring such movements because they reveal important, practical information: how fast does heat propagates in a fluid? How fast do liquid mixtures mix? Such phenomena occur in absence of a macroscopic flow, that is when the fluid appears to be at rest, and are called heat and mass diffusion respectively. While the theoretical prediction of heat and mass diffusion is still quite challenging, its measurement is a standard laboratory practice, but may become extremely difficult or impossible when dealing with mixtures of many liquids, due to the fact that such measurement needs to be carried out when the fluid is quiescent, a condition sometimes impossible to achieve on ground. This is precisely the objective of the SODI DSC experiment carried out on board the International Space Station: the measurement of diffusion in mixtures of liquids. By using very sensitive optical techniques, it will be possible to measure mass diffusion, compare with current theories, and improve our present understanding of how molecules move in liquid mixtures. The results will be used by the large team of scientists involved in the project to try to understand which of the many existing theories for mass diffusion is correctly predicting the experimental behavior.]

SOLAR (Solar Monitoring Observatory, ESA): The platform was in Sun Visibility period (#54) since 6/20 until 7/3. Nominal SOLSPEC measurements. Also some SOLACES spectrum measurements could be performed. Most of the time SolACES is kept at warm temperature to protect it from potential contamination, for thruster events, Soyuz undocking, ATV maneuver.

SOLO (Sodium Loading in Microgravity): No report.

Space-DRUMS (Space Dynamically Responding Ultrasonic Matrix System): No report.

Space Food (JAXA): No report.

SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite): Successfully completed a Smartphone Communication test. The test consisted of 10 minutes of continuous downlink of images and 11 echo commands (10 commands were planned).”

SPHINX (SPaceflight of Huvec: an Integrated eXperiment, ESA): No report.

SPICE (Smoke Point In Co-flow Experiment): No report.

SPINAL (Spinal Elongation): No report.

SPRINT: “Don, great job with your final in-flight Sprint ultrasound scan! Thank you also for your dedication to the Sprint experiment each week for your exercise. The team looks forward to seeing you on R+0. Safe travels home!”

SS-HDTV (Super Sensitivity High Definition Camera, JAXA): Mission completed last week.

STP-H3 (Space Test Program – Houston 3): MHTEX is continuing with a new test of the Capillary Pumped Loop (CPL) and the CPL is currently in a steady state. VADER continues to characterize the performance of the Aerogel blanket attached to the backside of the experiment. Canary is analyzing data collected for previous events. DISC has acquired more images this week and is processing images that were taken in previous weeks.

SWAB (Characterization of Microorganisms & Allergens in Spacecraft): No report.

TASTE IN SPACE (ESA): No report.

THERMOLAB (ESA): No report.

TRAC (Test of Reaction & Adaptation Capabilities): Planned.

TREADMILL KINEMATICS: No report.

TRIPLELUX-B (ESA): No report.

ULTRASOUND: Planned.

UMS (Urine Monitoring System (NASA): No report.

VASCULAR (CSA): “Don, thank you for successfully completing the second session this week.”

VCAM (Vehicle Cabin Atmosphere Module, NASA): No report.

VESSEL ID System (ESA): Nominal data acquisition with the NorAIS receiver. Due to COL-CC outages, there were some data packets gaps on 7/2-7/3, but all data could be retrieved afterwards. [Background: As the ISS circles Earth, it has been tracking individual ships crossing the seas beneath. An investigation hosted by ESA in COL module has been testing the viability of monitoring global maritime traffic from the station’s orbit hundreds of kilometers above since June 2010. The ship-detection system being tested is based on the AIS (Automatic Identification System), the marine equivalent of the air traffic control system. Astronauts were instrumental in enabling the COLAIS experiment, which is an in-orbit demonstration project of ESA’s General Support Technology Program. COL was not originally outfitted with VHF antennas to capture the AIS signals; they were installed on the outside of the module during a spacewalk in November 2009, with the remaining piece of hardware, the ERNOBox control computer, installed inside COL along with the NORAIS receiver in May 2010.- The two operational phases with the first receiver from Norway, or NORAIS, which is operated by FFI/Norway, have been extremely successful, with data telemetry received by the N-USOC, in Trondheim, Norway, via ESA’s COL-CC in Germany. Data has been received by NORAIS in almost continuous operation, and all modes of operation have worked extremely well. On a good day, approximately 400,000 ship position reports are received from more than 22,000 different ship identification numbers (Maritime Mobile Service Identity, or MMSI).– The NORAIS Receiver has a sample mode that can collect the raw signal, digitize it and send it to ground for analysis of signal quality, which is proving very helpful in making additional improvements/ refinements to the system. This is used both to investigate the signal environment and to evaluate the performance of new receiver technologies on the ground. Several hundred data sets have been collected and processed with new candidate algorithms for next generation receivers.– From the assessment of these data sets, an updated version of the decoder algorithm has been worked. The development benefits from the investigations of the sampled data and ongoing work in other ESA projects. The firmware was uploaded to the NORAIS Receiver through the station’s communications network. This upgrade #1 (“NORAIS Receiver FPGA firmware v18”), was activated on 1/20/2012.– The on-orbit data of the NORAIS Receiver v18 have been analyzed since and show very good results. The teams are confident in the operation and performance of v18 and have now preliminary results of the comparison of the performance of the upgraded NORAIS Receiver (v18) relative to the version operated prior to the upgrade (v16).– Changes of the signal environment on ISS can influence the number of correctly decoded messages, which makes it important to compare the results of this upgrade to a period running the old algorithm with a similar background level.– The daily averages are calculated for 11 days for both receiver versions. For the upgrade, the period considered for comparison is 1/21-1/31/2012, which are the first 11 days of operation. When selecting the period for the reference data it was important to find a period with the same background signal level as the 11 days with the upgraded NORAIS Receiver. The period from 11/27 – 12/7/2011 was. Even though the two 11 day periods are 45 days apart, the ship traffic should not be very different around the world, except for some regions in the north that may be hampered by sea ice.– The performance has been studied as the average number of decoded messages per day for the current upgrade v18 of the firmware and the original NORAIS Receiver software. The improvement is the ratio of these numbers (so average numbers of messages per day before the upgrade divided by number of messages after the upgrade). The number of messages from ships in various geographic areas shows a variation in the ratio of messages from 1.2 to 2.0, whereas the ratio of MMSI’s ranges from 1.1 to 1.9. The improvement in the Mediterranean is almost a factor of 2.0 in number of messages, and more than 1.6 in number of distinct ships per day. The improvement in other high-traffic zones, at the Gulf of Mexico and East Asia, is even higher.]

VESSEL IMAGING (ESA): No report. [Background: It is known that the ability of blood vessels to vasoconstrict – the ability of the muscular vessel wall to narrow the diameter of the blood vessel – is impaired during and after a human has been in space. “Vessel Imaging” is using the Ultrasound scanner on board the ISS to take images of the five different blood vessels in the lower abdomen and in the legs to study what changes occur to cause the blood vessels to be less able to vasoconstrict. For each vessel, a 5 second scan is performed to observe the blood vessel during several heart beats, followed by a scan where the ultrasound scan-head is tilted to allow a “cut through the blood vessel wall”. The same scans are also performed before flight, and these pre-flight images are used as the baseline to which the in-flight data is compared with. The images are analyzed to detect any changes in the blood vessel wall properties, such as wall thickness, elasticity or structure, changes in the size of the blood vessel or blood flow (volume) while the crewmember is in orbit.]

VIABLE (eValuatIon And monitoring of microBiofiLms insidE the ISS Payload Touch, NASA): No report.

VO2max (NASA): No report.

VLE (Video Lessons ESA): No report.

WAICO #1/#2 (Waving and Coiling of Arabidopsis Roots at Different g-levels; ESA): No report.

YEAST B (ESA): No report.

YOUTUBE SpaceLab: No report.

CEO (Crew Earth Observation): Through 6/27 the ground has received 124,021 of ISS CEO frames from Expedition 31 for review and cataloging. “Since last week, we have received new imagery with times corresponding to our CEO target request times as follows: Lake Nasser, Toshka Lakes, Egypt – 76 frames in 3 sessions, 1 in IR – target acquired – target requirements met for this season; Zagreb, Croatia – 30 frames in 2 sessions, 1 in IR – target not acquired; and Ljubljana, Slovenia – 21 frames in 2 sessions, 1 in IR – target not acquired. Thank you for your efforts to acquire our targets. Although more of your imagery has been identified for future publication, none was submitted this past week. Please keep those great shots coming!”

CEO targets uplinked for today were Aral Sea (the Aral Sea basins in southwestern Asia once contained the world’s fourth largest lake, but since the 1960’s the surface area [26,300 sq mi] has shrunk to just 10% of its original size due to diversions of its water inflow sources for large-scale irrigation projects. ISS had a fine, mid-afternoon pass in clear weather with much of what remains of this shrinking lake visible from nadir to the right of track. At this time, the crew was to try for contextual, short lens views of this target area to document the current state of the ongoing changes), Baku, Azerbaijan (CAPITAL CITIES COLLECTION SITE: The capital city of Azerbaijan with a population of just over 2 million is located in the extreme eastern part of the country and situated on the south side of the Abseron Peninsula which juts into the southwestern Caspian Sea. Today ISS had a fair weather pass with approach from the NW. At this time the crew was to begin looking towards nadir at the Abseron Peninsula for single frame views of this city), Beirut, Lebanon (CAPITAL CITIES COLLECTION SITE: ISS approach to Beirut was from the NW in mid-afternoon light with clear weather. This capital city of over 2 million is located on the central Lebanese coast. After tracking over the Nile River Delta, at this time the crew was to look nadir for this roughly triangular-shaped, city on a peninsula jutting westward into the Mediterranean Sea), Kellogg Biological Station, Michigan (LONG TERM ECOLOGICAL RESEACH SITE: CEO objective for these sites is to document land cover and land use change on a seasonal basis. Requested was the 400 mm lens to differentiate boundaries between land cover and coastal biomes. The Kellogg site is located in SW Michigan in the eastern portion of the U.S. Corn Belt, 50 km east of Lake Michigan. Today’s fair-weather, mid-morning pass tracks northeastward just south and east of Lake Michigan. At this time, as ISS passed near, the crew was to look nadir and try for a detailed mapping strip across the target area), Santa Barbara Coast, California (LONG-TERM ECOLOGICAL RESEACH SITE: This site is located in the coastal zone of southern California near Santa Barbara. It is bounded by the steep east-west trending Santa Ynez Mountains and coastal plain to the north and the unique Northern Channel Islands to the south. Point Conception, where the coast of California returns to a north to south orientation, lies at the western, and the Santa Clara River the eastern boundary. Remotely sensed data such as CEO photos support studies of the effects of land use and ocean forcing on the processing and transport of nutrients and carbon to giant kelp forests as well as the role of climate change/variability and disturbance on near-shore population dynamics, community structure, and ecosystem processes. The ISS pass approached the coast from the SW in mid-morning light. Fair weather offered an opportunity for detailed mapping views along this dramatic coast), and Mount St. Helens, WA (ISS had a late morning, fair-weather pass with a near-nadir view of this famous stratovolcano located in the Cascade Range of southern Washington. Evidence of the explosive eruption of 1980 is still visible today. As ISS tracked northeastward toward the forest-covered slopes of the Cascades, the crew was to look for this large, western-most peak and acquire detailed views of the summit area).

ISS Orbit (as of this morning, 8:56am EDT [= epoch])
Mean altitude – 399.3 km
Apogee height – 404.7 km
Perigee height – 393.9 km
Period — 92.55 min.
Inclination (to Equator) — 51.64 deg
Eccentricity — 0.0007992
Solar Beta Angle — -26.7 deg (magnitude increasing)
Orbits per 24-hr. day — 15.56
Mean altitude loss in the last 24 hours — 105 m
Revolutions since FGB/Zarya launch (Nov. 98) – 78,102
Time in orbit (station) — 4977 days
Time in orbit (crews, cum.) — 4264 days.

Significant Events Ahead (all dates Eastern Time and subject to change):
————–Three-crew operations————-
07/12/12 — Progress 47P propellant purging
07/14/12 — Soyuz TMA-05M/31S launch – 10:40:03pm EDT — S.Williams (CDR-33)/Y.Malenchenko/A.Hoshide
07/17/12 — Soyuz TMA-05M/31S docking — ~12:50am EDT
————–Six-crew operations—————-
07/18/12 — ATV/ISS reboost
07/20/12 — HTV3 launch (~10:18pm EDT)
07/22/12 — Progress M-15M/47P undock #1 ~4:22pm EDT
07/23/12 — Progress M-15M/47P Kurs-NA Test
07/23/12 — Progress M-15M/47P re-docking ~9:55pm EDT
07/27/12 — HTV3 docking
07/30/12 — Progress M-15M/47P undocking #2 ~2:11pm EDT
08/01/12 — Progress M-16M/48P launch [4-orbit RDVZ] ~3:35pm EDT
08/01/12 — Progress M-16M/48P launch [34-orbit RDVZ] ~3:38pm EDT
08/01/12 — Progress M-16M/48P docking [4-orbit RDVZ] ~9:24pm EDT
08/03/12 — Progress M-16M/48P docking [34-orbit RDVZ] ~6:14pm EDT
08/16/12 — Russian EVA-31
08/30/12 — US EVA-18
09/06/12 — HTV3 undocking
09/08/12 — HTV3 reentry
09/17/12 — Soyuz TMA-04M/30S undock/landing (End of Increment 32)
————–Three-crew operations————-
09/25/12 — ATV3 undocking
10/15/12 — Soyuz TMA-06M/32S launch – K.Ford (CDR-34)/O.Novitsky/E.Tarelkin
10/17/12 — Soyuz TMA-06M/32S docking
————–Six-crew operations————-
11/01/12 — Progress M-17M/49P launch
11/03/12 — Progress M-17M/49P docking
11/12/12 — Soyuz TMA-05M/31S undock/landing (End of Increment 33)
————–Three-crew operations————-
12/05/12 — Soyuz TMA-07M/33S launch – C.Hadfield (CDR-35)/T.Mashburn/R.Romanenko
12/07/12 — Soyuz TMA-07M/33S docking
————–Six-crew operations————-
12/26/12 — Progress M-18M/50P launch
12/28/12 — Progress M-18M/50P docking
03/19/13 — Soyuz TMA-06M/32S undock/landing (End of Increment 34)
————–Three-crew operations————-
04/02/13 — Soyuz TMA-08M/34S launch – P.Vinogradov (CDR-36)/C.Cassidy/A.Misurkin
04/04/13 — Soyuz TMA-08M/34S docking
————–Six-crew operations————-
05/16/13 — Soyuz TMA-07M/33S undock/landing (End of Increment 35)
————–Three-crew operations————-
05/29/13 — Soyuz TMA-09M/35S launch – M.Suraev (CDR-37)/K.Nyberg/L.Parmitano
05/31/13 — Soyuz TMA-09M/35S docking
————–Six-crew operations————-
09/xx/13 — Soyuz TMA-08M/34S undock/landing (End of Increment 36)
————–Three-crew operations————-
09/xx/13 — Soyuz TMA-10M/36S launch – M.Hopkins/TBD (CDR-38)/TBD
09/xx/13 — Soyuz TMA-10M/36S docking
————–Six-crew operations————-
11/xx/13 — Soyuz TMA-09M/35S undock/landing (End of Increment 37)
————–Three-crew operations————-
11/xx/13 — Soyuz TMA-11M/37S launch – K.Wakata (CDR-39)/R.Mastracchio/TBD
11/xx/13 — Soyuz TMA-11M/37S docking
————–Six-crew operations————-
03/xx/14 — Soyuz TMA-10M/36S undock/landing (End of Increment 38)
————–Three-crew operations————-

SpaceRef staff editor.