Status Report

NASA Hubble Space Telescope Daily Status Report #4682

By SpaceRef Editor
August 27, 2008
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #4682

Continuing to collect World Class Science

PERIOD COVERED: 5am August 25 – 5am August 26, 2008 (DOY 238/0900z-239/0900z)

OBSERVATIONS SCHEDULED

NIC1 11205

The Affects of Multiplicity on the Evolution of Young Stellar Objects: A NICMOS Imaging Study

We propose to use NICMOS to investigate the multiplicity of young stellar objects (YSOs) in the Orion B molecular cloud. Previous observations with the Spitzer Space Telescope have revealed a remarkable star forming filament near the NGC 2068 reflection nebula. The population of YSOs associated with the filament exhibit a surprisingly wide range of circumstellar evolutionary states, from deeply embedded protostars to T Tauri accretion disks. Many of the circumstellar disks themselves show evidence for significant dust evolution, including grain growth and settling and cleared inner holes, apparently in spite of the very young age of these stars. We will estimate the binary fraction of a representative sample of objects in these various stages of evolution in order to test whether companions may play a significant role in that evolution.

NIC1/NIC2 11172

Defining Classes of Long Period Variable Stars in M31

We propose a thrifty but information-packed investigation {1440 exposures total} with NICMOS F205W, F160W and F110W providing crucial information about Long Period Variables in M31, at a level of detail that has recently allowed the discovery of new variable star classes in the Magellanic Clouds, a very different stellar population. These observations are buttressed by an extensive map of the same fields with ACS and WFPC2 exposures in F555W and F814W, and a massive ground-based imaging patrol producing well-sampled light curves for more than 400,000 variable stars. Our primary goal is to collect sufficient NIR data in order to analyze and classify the huge number of long-period variables in our catalog {see below} through Period-Luminosity {P/L} diagrams. We will produce accurate P/L diagrams for both the bulge and a progression of locations throughout the disk of M31. These diagrams will be similar in quality to those currently in the Magellanic Clouds, with their lower metallicity, radically different star formation history, and larger spread in distance to the variables. M31 offers an excellent chance to study more typical disk populations, in a manner which might be extended to more distant galaxies where such variables are still visible, probing a much more evenly spread progenitor age distribution than cepheids {and perhaps useful as a distance scale alternative or cross-check}. Our data will also provide a massive and unique color-magnitude dataset, and allow us to confirm the microlensing nature of a large sample of candidate lensed sources in M31. We expect that this study will produce several important results, among them a better understanding of P/L and P/L-color relations for pulsating variables which are essential to the extragalactic distance ladder, will view these variables at a common distance over a range of metallicities {eliminating the distance- error vs. metallicity ambiguity between the LMC and SMC}, allow further insight into possible faint-variable mass-loss for higher metallicities, and in general produce a sample more typical of giant disk galaxies predominant in many studies.

NIC1/NIC2/NIC3 11820

NICMOS Post-SAA Calibration – CR Persistence Part 7

Internals for CR persistence

NIC2 11548

NICMOS Imaging of Protostars in the Orion A Cloud: The Role of Environment in Star Formation

We propose NICMOS observations of a sample of 252 protostars identified in the Orion A cloud with the Spitzer Space Telescope. These observations will image the scattered light escaping the protostellar envelopes, providing information on the shapes of outflow cavities, the inclinations of the protostars, and the overall morphologies of the envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron spectra of 75 of the protostars. Combining these new data with existing 3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured with the Spitzer Space Telescope, we will determine the physical properties of the protostars such as envelope density, luminosity, infall rate, and outflow cavity opening angle. By examining how these properties vary with stellar density (i.e. clusters vs groups vs isolation) and the properties of the surrounding molecular cloud; we can directly measure how the surrounding environment influences protostellar evolution, and consequently, the formation of stars and planetary systems. Ultimately, this data will guide the development of a theory of protostellar evolution.

WFPC2 11156

Monitoring Active Atmospheres on Uranus and Neptune

We propose Snapshot observations of Uranus and Neptune to monitor changes in their atmospheres on time scales of weeks and months. Uranus equinox is only months away, in December 2007. Hubble Space Telescope observations during the past several years {Hammel et al. 2005, Icarus 175, 284 and references therein} have revealed strongly wavelength- dependent latitudinal structure, the presence of numerous visible-wavelength cloud features in the northern hemisphere, at least one very long-lived discrete cloud in the southern hemisphere, and in 2006 the first dark spot ever seen on Uranus. Long-term ground-based observations {Lockwood and Jerzekiewicz, 2006, Icarus 180, 442; Hammel and Lockwood 2007, Icarus 186, 291} reveal seasonal brightness changes whose origins are not well understood. Recent near- IR images of Neptune obtained using adaptive optics on the Keck Telescope, together with HST observations {Sromovsky et al. 2003, Icarus 163, 256 and references therein} which include previous Snapshot programs {GO 8634, 10170, 10534} show a general increase in activity at south temperate latitudes until 2004, when Neptune returned to a rather Voyager-like appearance. Further Snapshot observations of these two dynamic planets will elucidate the nature of long-term changes in their zonal atmospheric bands and clarify the processes of formation, evolution, and dissipation of discrete albedo features.

WFPC2 11178

Probing Solar System History with Orbits, Masses, and Colors of Transneptunian Binaries

The recent discovery of numerous transneptunian binaries {TNBs} opens a window into dynamical conditions in the protoplanetary disk where they formed as well as the history of subsequent events which sculpted the outer Solar System and emplaced them onto their present day heliocentric orbits. To date, at least 47 TNBs have been discovered, but only about a dozen have had their mutual orbits and separate colors determined, frustrating their use to investigate numerous important scientific questions. The current shortage of data especially cripples scientific investigations requiring statistical comparisons among the ensemble characteristics. We propose to obtain sufficient astrometry and photometry of 23 TNBs to compute their mutual orbits and system masses and to determine separate primary and secondary colors, roughly tripling the sample for which this information is known, as well as extending it to include systems of two near-equal size bodies. To make the most efficient possible use of HST, we will use a Monte Carlo technique to optimally schedule our observations.

WFPC2 11302

WFPC2 CYCLE 16 Standard Darks – Part III

This dark calibration program obtains dark frames every week in order to provide data for the ongoing calibration of the CCD dark current rate, and to monitor and characterize the evolution of hot pixels. Over an extended period these data will also provide a monitor of radiation damage to the CCDs.

WFPC2 11793

WFPC2 Cycle 16 Internal Monitor

This calibration proposal is the Cycle 15 routine internal monitor for WFPC2, to be run weekly to monitor the health of the cameras. A variety of internal exposures are obtained in order to provide a monitor of the integrity of the CCD camera electronics in both bays (both gain 7 and gain 15 — to test stability of gains and bias levels), a test for quantum efficiency in the CCDs, and a monitor for possible buildup of contaminants on the CCD windows. These also provide raw data for generating annual super-bias reference files for the calibration pipeline.

WFPC2 11795

WFPC2 Cycle 16 UV Earth Flats

Monitor flat field stability. This proposal obtains sequences of earth streak flats to improve the quality of pipeline flat fields for the WFPC2 UV filter set. These Earth flats will complement the UV earth flat data obtained during cycles 8-15.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

#11453 REacq(1,0,1) failed during LOS to RGA only @ 238/1612z due to Scan Step Limit exceeded on FGS 1. Observations affected: NIC #41 & 42, Proposal ID #11548; and NIC #43, Proposal ID #11820.

#11454 GSAcq(1,2,1) resulted in Fine Lock back-up (1,0,1) @ 239/0157z. GSAcq 1,2,1 was scheduled from 239/01:53:37-02:01:00z. Possible observations affected: NICMOS #58-60, Proposal #11548.

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                           SCHEDULED      SUCCESSFUL
FGS GSacq                    11             11
FGS REacq                    03             02
OBAD with Maneuver           28             28

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.