NASA Hubble Space Telescope Daily Status Report #4314
Notice: For the foreseeable future, the daily reports may contain apparent discrepancies between some proposal descriptions and the listed instrument usage. This is due to the conversion of previously approved ACS WFC or HRC observations into WFPC2, or NICMOS observations subsequent to the loss of ACS CCD science capability in late January.
HUBBLE SPACE TELESCOPE DAILY REPORT # 4314
– Continuing to collect World Class Science
PERIOD COVERED: UT March 07, 2007 (DOY 066)
OBSERVATIONS SCHEDULED
ACS/SBC 10862
Comprehensive Auroral Imaging of Jupiter and Saturn during the International Heliophysical Year
A comprehensive set of observations of the auroral emissions from Jupiter and Saturn is proposed for the International Heliophysical Year in 2007, a unique period of especially concentrated measurements of space physics phenomena throughout the solar system. We propose to determine the physical relationship of the various auroral processes at Jupiter and Saturn with conditions in the solar wind at each planet. This can be accomplished with campaigns of observations, with a sampling interval not to exceed one day, covering at least one solar rotation. The solar wind plasma density approaching Jupiter will be measured by the New Horizons spacecraft, and a separate campaign near opposition in May 2007 will determine the effect of large-scale variations in the interplanetary magnetic field {IMF} on the Jovian aurora by extrapolation from near-Earth solar wind measurements. A similar Saturn campaign near opposition in Jan. 2007 will combine extrapolated solar wind data with measurements from a wide range of locations within the Saturn magnetosphere by Cassini. In the course of making these observations, it will be possible to fully map the auroral footprints of Io and the other satellites to determine both the local magnetic field geometry and the controlling factors in the electromagnetic interaction of each satellite with the corotating magnetic field and plasma density. Also in the course of making these observations, the auroral emission properties will be compared with the properties of the near-IR ionospheric emissions {from ground-based observations} and non thermal radio emissions, from ground-based observations for Jupiter?s decametric radiation and Cassini plasma wave measurements of the Saturn Kilometric Radiation {SKR}.
NIC1/NIC2/NIC3 8794
NICMOS Post-SAA calibration – CR Persistence Part 5
A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non- standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.
NIC2 10802
SHOES-Supernovae, HO, for the Equation of State of Dark energy
The present uncertainty in the value of the Hubble constant {resulting in an uncertainty in Omega_M} and the paucity of Type Ia supernovae at redshifts exceeding 1 are now the leading obstacles to determining the nature of dark energy. We propose a single, integrated set of observations for Cycle 15 that will provide a 40% improvement in constraints on dark energy. This program will observe known Cepheids in six reliable hosts of Type Ia supernovae with NICMOS, reducing the uncertainty in H_0 by a factor of two because of the smaller dispersion along the instability strip, the diminished extinction, and the weaker metallicity dependence in the infrared. In parallel with ACS, at the same time the NICMOS observations are underway, we will discover and follow a sample of Type Ia supernovae at z > 1. Together, these measurements, along with prior constraints from WMAP, will provide a great improvement in HST’s ability to distinguish between a static, cosmological constant and dynamical dark energy. The Hubble Space Telescope is the only instrument in the world that can make these IR measurements of Cepheids beyond the Local Group, and it is the only telescope in the world that can be used to find and follow supernovae at z > 1. Our program exploits both of these unique capabilities of HST to learn more about one of the greatest mysteries in science.
WFPC2 11083
The Structure, Formation and Evolution of Galactic Cores and Nuclei
A surprising result has emerged from the ACS Virgo Cluster Survey {ACSVCS}, a program to obtain ACS/WFC gz imaging for a large, unbiased sample of 100 early-type galaxies in the Virgo Cluster. On subarcsecond scales {i.e., <0.1"-1"}, the HST brightness profiles vary systematically from the brightest giants {which have nearly constant surface brightness cores} to the faintest dwarfs {which have compact stellar nuclei}. Remarkably, the fraction of galaxy mass contributed by the nuclei in the faint galaxies is identical to that contributed by supermassive black holes in the bright galaxies {0.2%}. These findings strongly suggest that a single mechanism is responsible for both types of Central Massive Object: most likely internally or externally modulated gas inflows that feed central black holes or lead to the formation of "nuclear star clusters". Understanding the history of gas accretion, star formation and chemical enrichment on subarcsecond scales has thus emerged as the single most pressing question in the study of nearby galactic nuclei, either active or quiescent. We propose an ambitious HST program {199 orbits} that constitutes the next, obvious step forward: high-resolution, ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W} imaging for the complete ACSVCS sample. By capitalizing on HST's unique ability to provide high-resolution images with a sharp and stable PSF at UV and IR wavelengths, we will leverage the existing optical HST data to obtain the most complete picture currently possible for the history of star formation and chemical enrichment on these small scales. Equally important, this program will lead to a significant improvement in the measured structural parameters and density distributions for the stellar nuclei and the underlying galaxies, and provide a sensitive measure of "frosting" by young stars in the galaxy cores. By virtue of its superb image quality and stable PSF, NICMOS is the sole instrument capable of the IR observations proposed here. In the case of the WFPC2 observations, high-resolution UV imaging {< 0.1"} is a capability unique to HST, yet one that could be lost at any time.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS: (None)
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL FGS GSacq 10 10 FGS REacq 04 04 OBAD with Maneuver 28 28
SIGNIFICANT EVENTS: (None)