NASA Hubble Space Telescope Daily Report #5161
HUBBLE SPACE TELESCOPE DAILY REPORT #5161
Continuing to Collect World Class Science
PERIOD COVERED: 5am August 16 – 5am August 17, 2010 (DOY 228/09:00z-229/09:00z)
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS:
12355 – GSAcq(1,2,1) at 228/11:51:32z, REAcq(1,2,1) at 228/13:04:36z, 228/14:44:47z and 228/16:23:51z all acquired fine lock backup on FGS 1 following scan step limit exceeded.
Observations possibly affected: WFC3 8-27, proposal ID#11671.
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 5 5
FGS REAcq 9 9
OBAD with Maneuver 3 3
SIGNIFICANT EVENTS: (None)
OBSERVATIONS SCHEDULED:
ACS/WFC 11996
CCD Daily Monitor (Part 3)
This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 308 orbits (19.25 weeks) from 21 June 2010 to 1 November 2010.
COS/FUV 11895
FUV Detector Dark Monitor
Monitor the FUV detector dark rate by taking long science exposures without illuminating the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.
COS/NUV 11900
NUV Internal/External Wavelength Scale Monitor
This program monitors the offsets between the wavelength scale set by the internal wavecal versus that defined by absorption lines in external targets. This is accomplished by observing two external radial velocity standard targets: HD187691 with G225M and G285M and HD6655 with G285M and G230L. The two standard targets have little flux in the wavelength range covered by G185M and so Feige 48 (sdO) is observed with this grating. Both Feige 48 and HD6655 are also observed in SMOV. The cenwaves observed in this program are a subset of the ones used during Cycle 17. Observing all cenwaves would require a considerably larger number of orbits. Constraints on scheduling of each target are placed so that each target is observed once every ~2-3 months. Observing the three targets every month would also require a considerably larger number of orbits.
COS/NUV/FUV 11741
Probing Warm-Hot Intergalactic Gas at 0.5 < z < 1.3 with a Blind Survey for O VI, Ne VIII, Mg X, and Si XII Absorption Systems Currently we can only account for half of the baryons (or less) expected to be found in the nearby universe based on D/H and CMB observations. This “missing baryons problem” is one of the highest-priority challenges in observational extragalatic astronomy. Cosmological simulations suggest that the baryons are hidden in low-density, shock-heated intergalactic gas in the log T = 5 – 7 range, but intensive UV and X-ray surveys using O VI, O VII, and O VIII absorption lines have not yet confirmed this prediction. We propose to use COS to carry out a sensitive survey for Ne VIII and Mg X absorption in the spectra of nine QSOs at z(QSO) > 0.89. For the three highest-redshift QSOs, we will also search for Si XII. This survey will provide more robust constraints on the quantity of baryons in warm-hot intergalactic gas at 0.5 < z < 1.3, and the data will provide rich constraints on the metal enrichment, physical conditions, and nature of a wide variety of QSO absorbers in addition to the warm-hot systems. By comparing the results to other surveys at lower redshifts (with STIS, FUSE, and from the COS GTO programs), the project will also enable the first study of how these absorbers evolve with redshift at z < 1. By combining the program with follow-up galaxy redshift surveys, we will also push the study of galaxy-absorber relationships to higher redshifts, with an emphasis on the distribution of the WHIM with respect to the large-scale matter distribution of the universe. STIS/CCD/MA 11668 Cosmo-chronometry and Elemental Abundance Distribution of the Ancient Star HE1523-0901 We propose to obtain near-UV HST/STIS spectroscopy of the extremely metal-poor, highly r-process-enhanced halo star HE 1523-0901, in order to produce the most complete abundance distribution of the heaviest stable elements, including platinum, osmium, and lead. These HST abundance data will then be used to estimate the initial abundances of the long-lived radioactive elements thorium and uranium, and by comparison with their observed abundances, enable an accurate age determination of this ancient star. The use of radioactive chronometers in stars provides an independent lower limit on the age of the Galaxy, which can be compared with alternative limits set by globular clusters and by analysis from WMAP. Our proposed observations of HE1523-0901 will also provide significant new information about the early chemical history of the Galaxy, specifically, the nature of the first generations of stars and the types of nucleosynthetic processes that occurred at the onset of Galactic chemical evolution. STIS/CCD 11721 Verifying the Utility of Type Ia Supernovae as Cosmological Probes: Evolution and Dispersion in the Ultraviolet Spectra The study of distant type Ia supernova (SNe Ia) offers the most practical and immediate discriminator between popular models of dark energy. Yet fundamental questions remain over possible redshift-dependent trends in their observed and intrinsic properties. High-quality Keck spectroscopy of a representative sample of 36 intermediate redshift SNe Ia has revealed a surprising, and unexplained, diversity in their rest-frame UV fluxes. One possible explanation is hitherto undiscovered variations in the progenitor metallicity. Unfortunately, this result cannot be compared to local UV data as only two representative SNe Ia have been studied near maximum light. Taking advantage of two new `rolling searches’ and the restoration of STIS, we propose a non-disruptive TOO campaign to create an equivalent comparison local sample. This will allow us to address possible evolution in the mean UV spectrum and its diversity, an essential precursor to the study of SNe beyond z~1. STIS/CCD 11845 CCD Dark Monitor Part 2 Monitor the darks for the STIS CCD. STIS/CCD 11847 CCD Bias Monitor-Part 2 Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns. WFC3/ACS/IR 11563 Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to <0.2L* from Deep IR Imaging of the HUDF and HUDF05 Fields The first generations of galaxies were assembled around redshifts z~7-10+, just 500-800 Myr after recombination, in the heart of the reionization of the universe. We know very little about galaxies in this period. Despite great effort with HST and other telescopes, less than ~15 galaxies have been reliably detected so far at z>7, contrasting with the ~1000 galaxies detected to date at z~6, just 200-400 Myr later, near the end of the reionization epoch. WFC3 IR can dramatically change this situation, enabling derivation of the galaxy luminosity function and its shape at z~7-8 to well below L*, measurement of the UV luminosity density at z~7-8 and z~8-9, and estimates of the contribution of galaxies to reionization at these epochs, as well as characterization of their properties (sizes, structure, colors). A quantitative leap in our understanding of early galaxies, and the timescales of their buildup, requires a total sample of ~100 galaxies at z~7-8 to ~29 AB mag. We can achieve this with 192 WFC3 IR orbits on three disjoint fields (minimizing cosmic variance): the HUDF and the two nearby deep fields of the HUDF05. Our program uses three WFC3 IR filters, and leverages over 600 orbits of existing ACS data, to identify, with low contamination, a large sample of over 100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits at z~10. By careful placement of the WFC3 IR and parallel ACS pointings, we also enhance the optical ACS imaging on the HUDF and a HUDF05 field. We stress (1) the need to go deep, which is paramount to define L*, the shape, and the slope alpha of the luminosity function (LF) at these high redshifts; and (2) the far superior performance of our strategy, compared with the use of strong lensing clusters, in detecting significant samples of faint z~7-8 galaxies to derive their luminosity function and UV ionizing flux. Our recent z~7.4 NICMOS results show that wide-area IR surveys, even of GOODS-like depth, simply do not reach faint enough at z~7-9 to meet the LF and UV flux objectives. In the spirit of the HDF and the HUDF, we will waive any proprietary period, and will also deliver the reduced data to STScI. The proposed data will provide a Legacy resource of great value for a wide range of archival science investigations of galaxies at redshifts z~2-9. The data are likely to remain the deepest IR/optical images until JWST is launched, and will provide sources for spectroscopic follow up by JWST, ALMA and EVLA.
WFC3/IR 11671
Kinematic Reconstruction of the Origin and IMF of the Massive Young Clusters at the Galactic Center
We propose to exploit the wide field capabilities of Wide Field Camera 3 to study star formation at the Galactic center. By studying young stars located in the most physically extreme region of our Galaxy, we can test star formation theories, which suggest that such environments should favor high mass stars and, in extreme cases, should suppress star formation entirely. Specifically, we will measure the proper motions and photometry of stars over the full extent of the three massive young clusters that have been identified at the Galactic Center (Arches, Quintuplet, and the Young Nuclear Star Cluster). These observations are a factor of ?2000 more efficient than what can be done with ground-based adaptive optics. Our goals are two-fold. First, we hope to establish the initial sites of star formation in order to obtain an accurate estimate of the conditions that led to the stellar populations within these clusters. Answering this question for the Young Nuclear Star Cluster is particularly important as it establishes whether or not star formation can indeed proceed within 0.1 pc of our Galaxy’s supermassive black hole. Second, we will measure the IMF in the Arches and Quintuplet, where dynamical evolution is less severe, using proper motions to determine membership and to reveal the tidal radius. Probing how the properties of the emergent stellar populations within our Galaxy may be affected by the physical environment in which they arise is an important first step to understanding how they might vary as a function of cosmic time and thereby affect our models of galaxy formation and evolution.
WFC3/IR 11696
Infrared Survey of Star Formation Across Cosmic Time
We propose to use the unique power of WFC3 slitless spectroscopy to measure the evolution of cosmic star formation from the end of the reionization epoch at z>6 to the close of the galaxy- building era at z~0.3.Pure parallel observations with the grisms have proven to be efficient for identifying line emission from galaxies across a broad range of redshifts. The G102 grism on WFC3 was designed to extend this capability to search for Ly-alpha emission from the first galaxies. Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will observe about 40 deep (4-5 orbit) fields with the combination of G102 and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.
Our primary science goals at the highest redshifts are: (1) Detect Lya in ~100 galaxies with z>5.6 and measure the evolution of the Lya luminosity function, independent of cosmic variance; 2) Determine the connection between emission line selected and continuum-break selected galaxies at these high redshifts, and 3) Search for the proposed signature of neutral hydrogen absorption at re-ionization. At intermediate redshifts we will (4) Detect more than 1000 galaxies in Halpha at 0.5< z<1.8 to measure the evolution of the extinction-corrected star formation density across the peak epoch of star formation. This is over an order-of-magnitude improvement in the current statistics, from the NICMOS Parallel grism survey. (5) Trace ``cosmic downsizing" from 0.5< z<2.2; and (6) Estimate the evolution in reddening and metallicty in star- forming galaxies and measure the evolution of the Seyfert population. For hundreds of spectra we will be able to measure one or even two line pair ratios -- in particular, the Balmer decrement and [OII]/[OIII] are sensitive to gas reddening and metallicity. As a bonus, the G102 grism offers the possibility of detecting Lya emission at z=7-8.8. To identify single-line Lya emitters, we will exploit the wide 0.8–1.9um wavelength coverage of the combined G102+G141 spectra. All [OII] and [OIII] interlopers detected in G102 will be reliably separated from true LAEs by the detection of at least one strong line in the G141 spectrum, without the need for any ancillary data. We waive all proprietary rights to our data and will make high-level data products available through the ST/ECF. WFC3/IR/S/CCD 11929 IR Dark Current Monitor Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS). WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS). WFC3/UVIS 11908 Cycle 17: UVIS Bowtie Monitor Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.