NASA Hubble Space Telescope Daily Report #5145
HUBBLE SPACE TELESCOPE DAILY REPORT #5145
Continuing to Collect World Class Science
PERIOD COVERED: 5am July 23 – 5am July 26, 2010 (DOY 204/09:00z-207/09:00z)
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS:
12337 – REAcq(2,1,1) scheduled at 205/09:14:55z failed to RGA control at 205/09:21:09z.
Observations affected: ACS 102-107 Proposal ID# 11887, WFC3 202 Proposal ID# 11905, WFC3 203-204 Proposal ID# 11929.
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 22 22
FGS REAcq 21 20
OBAD with Maneuver 22 22
SIGNIFICANT EVENTS: (None)
OBSERVATIONS SCHEDULED:
WFC3/UV/ACS/WFC/IR 12058
A Panchromatic Hubble Andromeda Treasury – I
We propose to image the north east quadrant of M31 to deep limits in the UV, optical, and near-IR. HST imaging should resolve the galaxy into more than 100 million stars, all with common distances and foreground extinctions. UV through NIR stellar photometry (F275W, F336W with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/NIR) will provide effective temperatures for a wide range of spectral types, while simultaneously mapping M31’s extinction. Our central science drivers are to: understand high-mass variations in the stellar IMF as a function of SFR intensity and metallicity; capture the spatially-resolved star formation history of M31; study a vast sample of stellar clusters with a range of ages and metallicities. These are central to understanding stellar evolution and clustered star formation; constraining ISM energetics; and understanding the counterparts and environments of transient objects (novae, SNe, variable stars, x-ray sources, etc.). As its legacy, this survey adds M31 to the Milky Way and Magellanic Clouds as a fundamental calibrator of stellar evolution and star-formation processes for understanding the stellar populations of distant galaxies. Effective exposure times are 977s in F275W, 1368s in F336W, 4040s in F475W, 4042s in F814W, 699s in F110W, and 1796s in F160W, including short exposures to avoid saturation of bright sources. These depths will produce photon-limited images in the UV. Images will be crowding-limited in the optical and NIR, but will reach below the red clump at all radii. The images will reach the Nyquist sampling limit in F160W, F475W, and F814W.
S/C 12046
COS FUV DCE Memory Dump
Whenever the FUV detector high voltage is on, count rate and current draw information is collected, monitored, and saved to DCE memory. Every 10 msec the detector samples the currents from the HV power supplies (HVIA, HVIB) and the AUX power supply (AUXI). The last 1000 samples are saved in memory, along with a histogram of the number of occurrences of each current value.
In the case of a HV transient (known as a “crackle” on FUSE), where one of these currents exceeds a preset threshold for a persistence time, the HV will shut down, and the DCE memory will be dumped and examined as part of the recovery procedure. However, if the current exceeds the threshold for less than the persistence time (a “mini-crackle” in FUSE parlance), there is no way to know without dumping DCE memory. By dumping and examining the histograms regularly, we will be able to monitor any changes in the rate of “mini-crackles” and thus learn something about the state of the detector.
WFC3/IR 12005
Unveiling the Dusty Starburst Galaxy Hosting GRB080607
GRB 080607 at redshift z = 3.0363 is a unique case of a highly extinguished (A_V ~ 3 mag) afterglow that was yet sufficiently bright for high-quality spectroscopy. The ISM properties revealed by our afterglow spectrum are unprecedented among GRB host galaxies, including an enormous dust and gas surface mass density (~ 400 M_sun/pc^2), the first detection of CO molecules, and roughly solar metallicity. Contrary to the common expectation of GRBs occurring preferentially in low-mass and low-metallicity environments, the observed large metal and dust content, together with the mass-metallicity relation known for z=2-3 galaxies, imply that the host galaxy is massive and intrinsically luminous. Identifying the host galaxy of this event is critical for connecting our spectroscopy to the rest of the poorly-understood dark burst population with suppressed optical afterglow light. Despite our large investments in optical and NIR imaging at ground-based telescopes to date, the host of GRB 080607 has eluded detection to an unobscured limiting UV luminosity of ~ 0.07 L*. The lack of bright emission suggests that the dust seen in the afterglow spectrum reflects the global dust content throughout the host ISM. Otherwise, it would imply the presence of highly metal-enriched regions in a low-mass galaxy, challenging the validity of our current understanding of star formation at high redshift.
The low sky background and high spatial resolution make HST and WFC3/IR the only instrument available to unveil the morphology and stellar counterpart of the dusty host galaxy of GRB 080607. Here we request Director’s Discretionary time to obtain deep near-infrared images of the field surrounding GRB 080607, using WFC3 and the IR channel with the F160W filter. The proposed imaging program will allow us to investigate whether the host of GRB 080607 is a dusty luminous galaxy or a faint dwarf galaxy with patchy dust clouds, and to examine the significance of dust enshrouded star formation at z~3.
The extraordinary ISM properties observed around GRB 080607 have stimulated a considerable amount of interest not only in the GRB community but also among observers and theorists who study star formation both in the nearby universe and at high redshift. We believe the proposed WFC3/IR imaging data will have high impact in the broader astrophysics community.
ACS/WFC 11996
CCD Daily Monitor (Part 3)
This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 308 orbits (19.25 weeks) from 21 June 2010 to 1 November 2010.
WFC3/IR 11933
IR Rate Dependent Non-linearity
The NICMOS non-linearity known as the Bohlin Effect has revealed that the apparent flux of a source observed by NICMOS is not a simple, linear function of count rate. The effect has been characterized by observations of star clusters observed with and without additional background from the internal lamps. As WFC3 lacks internal lamps which can be used to add background, we will rely on the bright Earth limb to provide additional background. We will observe a star cluster, 47 Tuc, repeatedly throughout a complete HST orbit which has been chosen to put the closest approach to the bright Earth to be 13.5 degrees, the closest approach allowed while retaining FGS guiding. Another set will be done with the BE limb closest approach of 15.5 degrees. The observations will be done with the two most commonly used filters, F110W and F160W and at two different bright Earth limb angles to test the linearity of the non-linearity. We have also included an orbit on NGC 1850 to repeat the NICMOS field for which the linearity of the field has been established.
WFC3/IR/S/C 11929
IR Dark Current Monitor
Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).
WFC3/IR 11917
IR Earth Flats Pathfinder
This program is an experimental path finder for Cycle 18 calibration. (The WFC3 UVIS version of this is program 11914 and contains additional detail in its description). Infrared-wavelength flat fields will be obtained by observing the dark side of the Earth during periods of full moon illumination. The observations will consist of full-frame streaked WFC3 IR imagery: per single “dark-sky” orbit, we anticipate achieving Poisson S/N > 100 per pixel in each of three to five exposures, depending on sample sequence (SPARS25 or SPARS50).
Why not use the Sunlit Earth? It is too bright for WFC3 IR full-frame minimum exposure time of 3 sec. Similarly, for NICMOS the sunlit-Earth is too bright which saturates the detector too quickly and/or induces abnormal behaviors such as super-shading (Gilmore 1998, NIC 098-011). In the narrowband IR filters the sunlit earth sometimes is faint enough to not saturate immediately, but based upon predictions (Cox et al. 1987 “Standard Astronomical Sources for HST: 6. Spatially Flat Fields.”) and observations (Gilmore 1998), we consider sunlit Earth unlikely to be successful unless it is twilight.
Other possibilities? Cox et al.’s Section II.D addresses many other possible sources for flat fields, rejecting them for a variety of reasons. A remaining possibility would be the totally eclipsed moon. Such eclipses provide approximately 2 hours (1 HST orbit) of opportunity per year, so they are too rare to be generically useful. An advantage of the moon over the Earth is that the moon subtends less than 0.25 square degree, whereas the Earth subtends a steradian or more, so scattered light and light prior to the unshuttered exposure presents additional problems for the Earth. Also, we’re unsure if HST can point 180 deg from the Sun.
WFC3/IR 11915
IR Internal Flat Fields
This program is the same as 11433 (SMOV) and depends on the completion of the IR initial alignment (Program 11425). This version contains three instances of 37 internal orbits: to be scheduled early, middle, and near the end of Cycle 17, in order to use the entire 110-orbit allocation.
In this test, we will study the stability and structure of the IR channel flat field images through all filter elements in the WFC3-IR channel. Flats will be monitored, i.e. to capture any temporal trends in the flat fields and delta flats produced. High signal observations will provide a map of the pixel-to-pixel flat field structure, as well as identify the positions of any dust particles.
WFC3/UVIS 11914
UVIS Earth Flats
This program is an experimental path finder for Cycle 18 calibration. Visible-wavelength flat fields will be obtained by observing the dark side of the Earth during periods of full moon illumination. The observations will consist of full-frame streaked WFC3 UVIS imagery: per 22-min total exposure time in a single “dark-sky” orbit, we anticipate collecting 7000 e/pix in F606W or 4500 e/pix in F814W. To achieve Poisson S/N > 100 per pixel, we require at least 2 orbits of F606W and 3 orbits of F814W.
For UVIS narrowband filters, exposures of 1 sec typically do not saturate on the sunlit Earth, so we will take sunlit Earth flats for three of the more-commonly used narrowband filters in Cycle 17 plus the also-popular long-wavelength quad filters, for which we get four filters at once.
Why not use the Sunlit Earth for the wideband visible-light filters? It is too bright in the visible for WFC3 UVIS minimum exposure time of 0.5 sec. Similarly, for NICMOS the sunlit-Earth is too bright which saturates the detector too quickly and/or induces abnormal behaviors such as super- shading (Gilmore 1998, NIC 098-011). In the narrowband visible and broadband near-UV its not too bright (predictions in Cox et al. 1987 “Standard Astronomical Sources for HST: 6. Spatially Flat Fields.” and observations in ACS Program 10050).
Other possibilities? Cox et al.’s Section II.D addresses many other possible sources for flat fields, rejecting them for a variety of reasons. A remaining possibility would be the totally eclipsed moon. Such eclipses provide approximately 2 hours (1 HST orbit) of opportunity per year, so they are too rare to be generically useful. An advantage of the moon over the Earth is that the moon subtends less than 0.25 square degree, whereas the Earth subtends a steradian or more, so scattered light and light potentially leaking around the shutter presents additional problems for the Earth. Also, we’re unsure if HST can point 180 deg from the Sun.
WFC3/UVIS 11908
Cycle 17: UVIS Bowtie Monitor
Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.
WFC3/UVIS 11905
WFC3 UVIS CCD Daily Monitor
The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).
ACS/WFC3 11887
CCD Stability Monitor
This program will verify that the low frequency flat fielding, the photometry, and the geometric distortion are stable in time and across the field of view of the CCD arrays. A moderately crowded stellar field in the cluster 47 Tuc is observed with the ACS (at the cluster core) and WFC3 (6 arcmin West of the cluster core) using the full suite of broad and narrow band imaging filters. The positions and magnitudes of objects will be used to monitor local and large scale variations in the plate scale and the sensitivity of the detectors and to derive an independent measure of the detector CTE. The UV sensitivity for the SBC and ACS will be addressed in the UV contamination monitor program (11886, PI=Smith).
One additional orbit will be obtained at the beginning of the cycle will allow a verification of the CCD gain ratios for WFC3 using gain 2.0, 1.4, 1.0, 0.5 and for ACS using gain 4.0 and 2.0. In addition, one subarray exposure with the WFC3 will allow a verification that photometry obtained in full-frame and in sub-array modes are repeatable to better than 1%. This test is important for the ACS Photometric Cross-Calibration program (11889, PI=Bohlin) which uses sub-array exposures.
STIS/CC 11847
CCD Bias Monitor-Part 2
Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.
STIS/CC 11845
CCD Dark Monitor Part 2
Monitor the darks for the STIS CCD.
ACS/WFC3 11735
The LSD Project: Dynamics, Merging and Stellar Populations of a Sample of Well-Studied LBGs at z~3
A large observational effort with the ground-based ESO/VLT telescopes allowed us to obtain deep, spatially-resolved, near-IR spectra of complete sample of 11 Lyman-Break Galaxies at z~3.1. These observations were used to obtain, for the first time, the metallicity and the dynamical properties of a sample of objects that, albeit small, is representative of the total population of the LBGs. We propose to use HST to obtain high-resolution optical and near-IR images of this sample of LBGs in order to study the broad-band morphology and the stellar light distribution of these galaxies. These images, exploiting the superior spatial resolution of HST images and the low-background : 1- will allow a precise measure of the dynamical mass from the velocity field derived with spectroscopy; 2- will permit a comparison of the distribution of star formation (from the line emission) with the underlying stellar population, and, 3- will be used to check if the complex velocity field and the multiple line-emitting regions detected in most targets can be ascribed to on-going mergers. This accurate study will shed light on a number of unsolved problems still affecting the knowledge of the LBGs.
WFC3/UVIS 11732
The Temperature Profiles of Quasar Accretion Disks
We can now routinely measure the size of quasar accretion disks using gravitational microlensing of lensed quasars. At optical wavelengths we observe a size and scaling with black hole mass roughly consistent with thin disk theory but the sizes are larger than expected from the observed optical fluxes. One solution would be to use a flatter temperature profile, which we can study by measuring the wavelength dependence of the disk size over the largest possible wavelength baseline. Thus, to understand the size discrepancy and to probe closer to the inner edge of the disk we need to extend our measurements to UV wavelengths, and this can only be done with HST. For example, in the UV we should see significant changes in the optical/UV size ratio with black hole mass. We propose monitoring 5 lenses spanning a broad range of black hole masses with well-sampled ground based light curves, optical disk size measurements and known GALEX UV fluxes during Cycles 17 and 18 to expand from our current sample of two lenses. We would obtain 5 observations of each target in each Cycle, similar to our successful strategy for the first two targets.
WFC3/UVIS 11730
Continued Proper Motions of the Magellanic Clouds: Orbits, Internal Kinematics, and Distance
In Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in the Magellanic Clouds centered on background quasars. We used these data to determine the proper motions of the LMC and SMC to better than 5% and 15% respectively. The results had a number of unexpected implications for the Milky Way-LMC-SMC system and received considerable attention in the literature and in the press. The implied three-dimensional velocities are larger than previously believed and close to the escape velocity in a standard 10^12 solar mass Milky Way dark halo. Our orbit calculations suggest the Clouds may not be bound to the Milky Way or may just be on their first passage, both of which are unexpected in view of traditional interpretations of the Magellanic Stream. Alternatively, the Milky Way dark halo may be a factor two more massive than previously believed, which would be surprising in view of other observational constraints. Also, the relative velocity between the LMC and SMC was larger than expected, leaving open the possibility that the Clouds may not be bound to each other. To further verify and refine our results we requested an additional epoch data in Cycle 16 which is being executed with WFPC2/PC due to the failure of ACS. A detailed analysis of one LMC field shows that the field proper motion using all three epochs of data is consistent within 1-sigma with the two- epoch data, thus verifying that there are no major systematic effects in our previous measurements. The random errors, however, are only smaller by a factor of 1.4 because of the relatively large errors in the WFPC2 data. A prediction for a fourth epoch with measurement errors similar to epochs 1 and 2 shows that the uncertainties will improve by a factor of 3. This will allow us to better address whether the Clouds are indeed bound to each other and to the Milky Way. It will also allow us to constrain the internal motions of various populations within the Clouds, and to determine a distance to the LMC using rotational parallax. Continuation of this highly successful program is therefore likely to provide important additional insights. Execution in SNAPshot mode guarantees maximally efficient use of HST resources.
ACS/WFC3 11670
The Host Environments of Type Ia Supernovae in the SDSS Survey
The Sloan Digital Sky Survey Supernova Survey has discovered nearly 500 type Ia supernovae and created a large, unique, and uniform sample of these cosmological tools. As part of a comprehensive study of the supernova hosts, we propose to obtain Hubble ACS images of a large fraction of these galaxies. Integrated colors and spectra will be measured from the ground, but we require high-resolution HST imaging to provide accurate morphologies and color information at the site of the explosion. This information is essential in determining the systematic effects of population age on type Ia supernova luminosities and improving their reliability in measuring dark energy. Recent studies suggest two populations of type Ia supernovae: a class that explodes promptly after star-formation and one that is delayed by billions of years. Measuring the star-formation rate at the site of the supernova from colors in the HST images may be the best way to differentiate between these classes.
WFC3/UVIS/IR 11662
Improving the Radius-Luminosity Relationship for Broad-Lined AGNs with a New Reverberation Sample
The radius-luminosity (R-L) relationship is currently the fundamental basis for all techniques used to estimate black hole masses in AGNs, in both the nearby and distant universe. However, the current R-L relationship is based on 34 objects that cover a limited range in black hole mass and luminosity. To improve our understanding of black hole growth and evolution, the R-L relationship must be extended to cover a broader range of black hole masses using the technique known as reverberation mapping. To this end, we have been awarded an unprecedented 64 nights on the Lick Observatory 3-m telescope between March 24 and May 31, 2008, to spectroscopically monitor 12 AGNs in order to measure their black hole masses. To properly determine the luminosities of these 12 AGNs, we must correct them for their host-galaxy starlight contributions using high-resolution images. Previous work by Bentz et al. (2006) has shown that the starlight correction to AGN luminosity measurements is an essential component to interpreting the R-L relationship. The correction will be substantial for each of the 12 sources we will monitor, as the AGNs are relatively faint and embedded in nearby, bright galaxies. Starlight corrections are not possible with ground-based images, as the PSF and bulge contributions become indistinguishable under typical seeing conditions, and adaptive optics are not yet operational in the spectral range where the corrections are needed. In addition, spectral decompositions are very model-dependent and are limited by the degree of accuracy to which we understand emission processes and stellar populations in galaxies. Without correcting for starlight, we will be unable to apply the results of our Spring 2008 campaign to the body of knowledge from previous reverberation mapping work. Therefore, we propose to obtain high resolution, high dynamic range images of the host galaxies of the 12 AGNs in our ground-based monitoring sample, as well as one white dwarf which will be used as a PSF model.
WFC3/UVIS 11657
The Population of Compact Planetary Nebulae in the Galactic Disk
We propose to secure narrow- and broad-band images of compact planetary nebulae (PNe) in the Galactic Disk to study the missing link of the early phases of post-AGB evolution. Ejected AGB envelopes become PNe when the gas is ionized. PNe expand, and, when large enough, can be studied in detail from the ground. In the interim, only the HST capabilities can resolve their size, morphology, and central stars. Our proposed observations will be the basis for a systematic study of the onset of morphology. Dust properties of the proposed targets will be available through approved Spitzer/IRS spectra, and so will the abundances of the alpha- elements. We will be able thus to explore the interconnection of morphology, dust grains, stellar evolution, and populations. The target selection is suitable to explore the nebular and stellar properties across the galactic disk, and to set constraints on the galactic evolutionary models through the analysis of metallicity and population gradients.
WFC3/UVIS/IR 11644
A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System
The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone. In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system. To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations. With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point. Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system. While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets. The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date. We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups. These objects will likely define the core Kuiper Belt compositional sample for years to come. While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery — both anticipated and not — is extraordinary.
WFC3/UVIS 11643
A Timeline for Early-Type Galaxy Formation: Mapping the Evolution of Star Formation, Globular Clusters, Dust, and Black Holes
While considerable effort has been devoted to statistical studies of the origin of the red sequence of galaxies, there has been relatively little direct exploration of galaxies transforming from late to early types. Such galaxies are identified by their post-starburst spectra, bulge- dominated, tidally-disturbed morphologies, and current lack of gas. We are constructing the first detailed timeline of their evolution onto the red sequence, pinpointing when star formation ends, nuclear activity ceases, globular clusters form, and the bulk of the merging progenitors’ dust disappears. Here we propose to obtain HST and Chandra imaging of nine galaxies, whose wide range of post-starburst ages we have precisely dated with a new UV-optical technique and for which we were awarded Spitzer time. We will address 1) whether the black hole-bulge mass relation arises from nuclear feedback, 2) whether the bimodality of globular cluster colors is due to young clusters produced in galaxy mergers, and 3) what happens to the dust when late types merge to form an early type.
WFC3/IR 11631
Binary Brown Dwarfs and the L/T Transition
Brown dwarfs traverse spectral types M, L and T as their atmospheric structure evolves and they cool into oblivion. This SNAPSHOT program will obtain WFC3-IR images of 45 nearby late-L and early-T dwarfs to investigate the nature of the L/T transition. Recent analyses have suggested that a substantial proportion of late-L and early-T dwarfs are binaries, comprised of an L dwarf primary and T dwarf secondary. WFC3-IR observations will let us quantify this suggestion by expanding coverage to a much larger sample, and permitting comparison of the L/T binary fraction against ‘normal’ ultracool dwarfs. Only eight L/T binaries are currently known, including several that are poorly resolved: we anticipate at least doubling the number of resolved systems. The photometric characteristics of additional resolved systems will be crucial to constraining theoretical models of these late-type ultracool dwarfs. Finally, our data will also be eminently suited to searching for extremely low luminosity companions, potentially even reaching the Y dwarf regime.
WFC3/IR 11591
Are Low-Luminosity Galaxies Responsible for Cosmic Reionization?
Our group has demonstrated that massive clusters, acting as powerful cosmic lenses, can constrain the abundance and properties of low-luminosity star-forming sources beyond z~6; such sources are thought to be responsible for ending cosmic reionization. The large magnification possible in the critical regions of well-constrained clusters brings sources into view that lie at or beyond the limits of conventional exposures such as the UDF. We have shown that the combination of HST and Spitzer is particularly effective in delivering the physical properties of these distant sources, constraining their mass, age and past star formation history. Indirectly, we therefore gain a valuable glimpse to yet earlier epochs. Recognizing the result (and limitations) of blank field surveys, we propose a systematic search through 10 lensing clusters with ACS/F814W and WFC3/[F110W+F160W] (in conjunction with existing deep IRAC data). Our goal is to measure with great accuracy the luminosity function at z~7 over a range of at least 3 magnitude, based on the identification of about 50 lensed galaxies at 6.5