NASA Hubble Space Telescope Daily Report #5136
HUBBLE SPACE TELESCOPE DAILY REPORT #5136
Continuing to Collect World Class Science
PERIOD COVERED: 5am July 12 – 5am July 13, 2010 (DOY 193/09:00z-194/09:00z)
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS: (None)
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 9 9
FGS REAcq 7 7
OBAD with Maneuver 8 8
SIGNIFICANT EVENTS: (None)
OBSERVATIONS SCHEDULED:
ACS/WFC 11996
CCD Daily Monitor (Part 3)
This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 308 orbits (19.25 weeks) from 21 June 2010 to 1 November 2010.
COS/FUV 11699
On the Evolutionary Status of Extremely Hot Helium Stars – are the O(He) Stars Successors of the R CrB Stars?
We propose UV spectroscopy of the four unique post-AGB stars of spectral type O(He) in order to understand the origin of their peculiar surface abundances. These stars are the only known amongst the hottest post-AGB stars (effective temperatures > 100, 000 K) whose atmospheres are composed of almost pure helium. This chemistry markedly differs from that of the hydrogen-deficient post-AGB evolutionary sequence with objects which have carbon dominated atmospheres (PG1159 stars and Wolf-Rayet central stars).
While PG1159 and Wolf-Rayet stars are the result of a late helium-shell flash, this scenario cannot explain the O(He) stars. Instead, they are possibly double-degenerate mergers. We speculate that the four O(He) stars represent evolved RCrB stars, which also have helium-dominated atmospheres. We aim to determine the C, N, O, and Si abundances precisely, in order to proof this evolutionary link.
COS/FUV 11895
FUV Detector Dark Monitor
Monitor the FUV detector dark rate by taking long science exposures without illuminating the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.
COS/NUV 11894
NUV Detector Dark Monitor
The purpose of this proposal is to measure the NUV detector dark rate by taking long science exposures with no light on the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.
STIS/CC 11845
CCD Dark Monitor Part 2
Monitor the darks for the STIS CCD.
STIS/CC 11847
CCD Bias Monitor-Part 2
Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.
STIS/CC/MA 11576
Physical Parameters of the Upper Atmosphere of the Extrasolar Planet HD209458b
One of the most studied extrasolar planet, HD209458b, has revealed both its lower and upper atmosphere thanks to HST and Spitzer observatories.
Through transmission spectroscopy technique, several atmospheric species were detected: NaI, HI, OI and CII. Using STIS archived transit absorption spectrum from 3000 to 8000 Angstrom, we obtained detailed constraints on the vertical profile of temperature, pressure and abundances (Sing et al 2008a, 2008b, Lecavelier et al. 2008b).
By observing in the NUV, from 2300 to 3100 Angstrom, we expect to obtain new constraints on the physical conditions and the chemical composition of the upper atmosphere: temperature/pressure profile up to very high in the atmosphere, abundance and condensation altitudes of new species, and new insight in the atmospheric escape and ionization state at the upper levels. The observation of four HD209458b transits with a single E230M setting will give access to many NUV atomic lines addressing these issues. The proposed observations will probe, for the first time, in details the atmosphere of a hot Jupiter, thus bench marking follow up studies.
STIS/CCD 11849
STIS CCD Hot Pixel Annealing
This purpose of this activity is to repair radiation induced hot pixel damage to the STIS CCD by warming the CCD to the ambient instrument temperature and annealing radiation-damaged pixels.
Radiation damage creates hot pixels in the STIS CCD Detector. Many of these hot pixels can be repaired by warming the CCD from its normal operating temperature near -83 deg. C to the ambient instrument temperature (~ +5 deg. C) for several hours. The number of hot pixels repaired is a function of annealing temperature. The effectiveness of the CCD hot pixel annealing process is assessed by measuring the dark current behavior before and after annealing and by searching for any window contamination effects.
STIS/CCD 11853
Cycle 17 STIS CCD Imaging Flats
This program periodically monitors the STIS CCD imaging mode flat fields by using the tungsten lamps.
WFC3/IR 11631
Binary Brown Dwarfs and the L/T Transition
Brown dwarfs traverse spectral types M, L and T as their atmospheric structure evolves and they cool into oblivion. This SNAPSHOT program will obtain WFC3-IR images of 45 nearby late-L and early-T dwarfs to investigate the nature of the L/T transition. Recent analyses have suggested that a substantial proportion of late-L and early-T dwarfs are binaries, comprised of an L dwarf primary and T dwarf secondary. WFC3-IR observations will let us quantify this suggestion by expanding coverage to a much larger sample, and permitting comparison of the L/T binary fraction against ?normal? ultracool dwarfs. Only eight L/T binaries are currently known, including several that are poorly resolved: we anticipate at least doubling the number of resolved systems. The photometric characteristics of additional resolved systems will be crucial to constraining theoretical models of these late-type ultracool dwarfs. Finally, our data will also be eminently suited to searching for extremely low luminosity companions, potentially even reaching the Y dwarf regime.
WFC3/IR/S/C 11929
IR Dark Current Monitor
Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).
WFC3/UV/ACS/WFC/IR 12057
A Panchromatic Hubble Andromeda Treasury – I
We propose to image the north east quadrant of M31 to deep limits in the UV, optical, and near-IR. HST imaging should resolve the galaxy into more than 100 million stars, all with common distances and foreground extinctions. UV through NIR stellar photometry (F275W, F336W with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/NIR) will provide effective temperatures for a wide range of spectral types, while simultaneously mapping M31’s extinction. Our central science drivers are to: understand high-mass variations in the stellar IMF as a function of SFR intensity and metallicity; capture the spatially-resolved star formation history of M31; study a vast sample of stellar clusters with a range of ages and metallicities. These are central to understanding stellar evolution and clustered star formation; constraining ISM energetics; and understanding the counterparts and environments of transient objects (novae, SNe, variable stars, x-ray sources, etc.). As its legacy, this survey adds M31 to the Milky Way and Magellanic Clouds as a fundamental calibrator of stellar evolution and star-formation processes for understanding the stellar populations of distant galaxies. Effective exposure times are 977s in F275W, 1368s in F336W, 4040s in F475W, 4042s in F814W, 699s in F110W, and 1796s in F160W, including short exposures to avoid saturation of bright sources. These depths will produce photon-limited images in the UV. Images will be crowding-limited in the optical and NIR, but will reach below the red clump at all radii. The images will reach the Nyquist sampling limit in F160W, F475W, and F814W.
WFC3/UVIS 11595
Turning Out the Light: A WFC3 Program to Image z>2 Damped Lyman Alpha Systems
We propose to directly image the star-forming regions of z>2 damped Lya systems (DLAs) using the WFC3/UVIS camera on the HUBBLE SPACE TELESCOPE. In contrast to all previous attempts to detect the galaxies giving rise to high redshift DLAs, we will use a novel technique that completely removes the glare of the background quasar. Specifically, we will target quasar sightlines with multiple DLAs and use the higher redshift DLA as a “blocking filter” (via Lyman limit absorption) to eliminate all FUV emission from the quasar. This will allow us to carry out a deep search for FUV emission from the lower redshift DLA, shortward of the Lyman limit of the higher redshift absorber. The unique filter set and high spatial resolution afforded by WFC3/UVIS will then enable us to directly image the lower redshift DLA and thus estimate its size, star- formation rate and impact parameter from the QSO sightline. We propose to observe a sample of 20 sightlines, selected primarily from the SDSS database, requiring a total of 40 HST orbits. The observations will allow us to determine the first FUV luminosity function of high redshift DLA galaxies and to correlate the DLA galaxy properties with the ISM characteristics inferred from standard absorption-line analysis to significantly improve our understanding of the general DLA population.
WFC3/UVIS 11697
Proper Motion Survey of Classical and SDSS Local Group Dwarf Galaxies
Using the superior resolution of HST, we propose to continue our proper motion survey of Galactic dwarf galaxies. The target galaxies include one classical dwarf, Leo II, and six that were recently identified in the Sloan Digital Sky Survey data: Bootes I, Canes Venatici I, Canes Venatici II, Coma Berenices, Leo IV, and Ursa Major II. We will observe a total of 16 fields, each centered on a spectroscopically-confirmed QSO. Using QSOs as standards of rest in measuring absolute proper motions has proven to be the most accurate and most efficient method. HST is our only option to quickly determine the space motions of the SDSS dwarfs because suitable ground-based imaging is only a few years old and such data need several decades to produce a proper motion. The two most distant galaxies in our sample will require time baselines of four years to achieve our goal of a 30-50 km/s uncertainty in the tangential velocity; given this and the finite lifetime of HST, it is imperative that first-epoch observations be taken in this cycle. The SDSS dwarfs have dramatically lower surface brightnesses and luminosities than the classical dwarfs. Proper motions are crucial for determining orbits of the galaxies and knowing the orbits will allow us to test theories for the formation and evolution of these galaxies and, more generally, for the formation of the Local Group.
WFC3/UVIS 11905
WFC3 UVIS CCD Daily Monitor
The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).