Status Report

NASA Hubble Space Telescope Daily Report #5128

By SpaceRef Editor
July 8, 2010
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #5128

Continuing to Collect World Class Science

PERIOD COVERED: 5am June 29 – 5am June 30, 2010 (DOY 180/09:00z-181/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

FOR DOY 165

12315 – GSAcq(1,2,1) at 165/05:17:55z required two attempts to achieve FL-DV on FGS1. The initial attempt resulted in scan step limit exceeded. The acq was successful.

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 6 6
FGS REAcq 8 8
OBAD with Maneuver 4 4

SIGNIFICANT EVENTS: (None)

OBSERVATIONS SCHEDULED:

ACS/SBC 11886

UV Contamination Monitor

The observations consist of imaging and spectroscopy with SBC and HRC of the cluster NGC 6681 in order to monitor the temporal evolution of the UV sensitivity of the SBC and the HRC.

COS/NUV 11705

Physical Properties of Quasar Outflows: From BALs to Mini-BALs

Accretion disk outflows are important components of quasar environments. They might play a major role in facilitating accretion, regulating star formation in the host galaxies and distributing metals to the surrounding gas. They reveal themselves most conspicuously via broad absorption lines (BALs), but they appear even more frequently in other guises such as the weaker and narrower “mini-BALs.” How are these diverse outflow features related? Are mini-BALs really just “mini” versions of the BALs, or do they represent a fundamentally different type of outflow, with different degrees of ionization, column densities, mass loss rates, physical origins, etc.?

We propose HST-COS spectroscopy to make the first quantitative assessment of the outflow physical conditions across the full range of weak/narrow mini-BALs to strong/broad BALs. Our strategy is to measure key diagnostic lines (SVI, OVI, CIII, SIV, PV, etc.) at 930A – 1130A (rest- frame) in a sample of 7 outflow quasars with known mini-BALs through weak BALs. We will then 1) combine the COS data with ground-based spectra of the same quasars to include more lines (CIV, SiIV) at longer wavelengths, and 2) include in our analysis a nearly identical UV/optical dataset obtained previously for a sample of quasars with strong BALs. Our study of this combined dataset will be an essential next step toward a more global understanding of quasar outflows.

STIS/CC 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

STIS/CC 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

WFC3/ACS/UVIS 11684

The First Proper Motion Measurement for M31: Dynamics and Mass of the Local Group

We will perform observations to determine the proper motion of the Andromeda galaxy M31, which has been sought for almost a century without success. While challenging, this measurement has now become possible due to the availability of existing deep ACS/WFC images of several M31 fields. The requested second epoch images will yield the average shift of the M31 stars with respect to compact galaxies in the background. Our observing strategy uses six different fields (three primary and three coordinated parallel) with two different instruments (ACS and WFC3) to provide a maximum handle on possible systematic effects. The expected result will be sufficiently accurate to: (a) discriminate between different histories for the dynamics of the Local Group; (b) constrain the mass distribution of the Local Group; (c) determine the details of the expected future merger between M31 and the Milky Way; (d) infer the past interaction history between M31 and M33; (e) constrain the internal proper motion kinematics of the M31 spheroid, outer disk, and tidal stream; and (f) obtain a pilot estimate of the M31 distance through the method of rotational parallax.

WFC3/IR 11671

Kinematic Reconstruction of the Origin and IMF of the Massive Young Clusters at the Galactic Center

We propose to exploit the wide field capabilities of Wide Field Camera 3 to study star formation at the Galactic center. By studying young stars located in the most physically extreme region of our Galaxy, we can test star formation theories, which suggest that such environments should favor high mass stars and, in extreme cases, should suppress star formation entirely. Specifically, we will measure the proper motions and photometry of stars over the full extent of the three massive young clusters that have been identified at the Galactic Center (Arches, Quintuplet, and the Young Nuclear Star Cluster). These observations are a factor of ?2000 more efficient than what can be done with ground-based adaptive optics. Our goals are two-fold. First, we hope to establish the initial sites of star formation in order to obtain an accurate estimate of the conditions that led to the stellar populations within these clusters. Answering this question for the Young Nuclear Star Cluster is particularly important as it establishes whether or not star formation can indeed proceed within 0.1 pc of our Galaxy?s supermassive black hole. Second, we will measure the IMF in the Arches and Quintuplet, where dynamical evolution is less severe, using proper motions to determine membership and to reveal the tidal radius. Probing how the properties of the emergent stellar populations within our Galaxy may be affected by the physical environment in which they arise is an important first step to understanding how they might vary as a function of cosmic time and thereby affect our models of galaxy formation and evolution.

WFC3/IR 11696

Infrared Survey of Star Formation Across Cosmic Time

We propose to use the unique power of WFC3 slitless spectroscopy to measure the evolution of cosmic star formation from the end of the reionization epoch at z>6 to the close of the galaxy- building era at z~0.3.Pure parallel observations with the grisms have proven to be efficient for identifying line emission from galaxies across a broad range of redshifts. The G102 grism on WFC3 was designed to extend this capability to search for Ly-alpha emission from the first galaxies. Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will observe about 40 deep (4-5 orbit) fields with the combination of G102 and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

Our primary science goals at the highest redshifts are: (1) Detect Lya in ~100 galaxies with z>5.6 and measure the evolution of the Lya luminosity function, independent of of cosmic variance; 2) Determine the connection between emission line selected and continuum-break selected galaxies at these high redshifts, and 3) Search for the proposed signature of neutral hydrogen absorption at re-ionization. At intermediate redshifts we will (4) Detect more than 1000 galaxies in Halpha at 0.57.5 with a WFC3 Pure Parallel Survey

The epoch of reionization represents a special moment in the history of the Universe as it is during this era that the first galaxies and star clusters are formed. Reionization also profoundly affects the environment where subsequent generations of galaxies evolve. Our overarching goal is to test the hypothesis that galaxies are responsible for reionizing neutral hydrogen. To do so we propose to carry out a pure parallel WFC3 survey to constrain the bright end of the redshift z>7.5 galaxy luminosity function on a total area of 176 arcmin^2 of sky. Extrapolating the evolution of the luminosity function from z~6, we expect to detect about 20 Lyman Break Galaxies brighter than M_* at z~8 significantly improving the current sample of only a few galaxies known at these redshifts. Finding significantly fewer objects than predicted on the basis of extrapolation from z=6 would set strong limits to the brightness of M_*, highlighting a fast evolution of the luminosity function with the possible implication that galaxies alone cannot reionize the Universe. Our observations will find the best candidates for spectroscopic confirmation, that is bright z>7.5 objects, which would be missed by small area deeper surveys. The random pointing nature of the program is ideal to beat cosmic variance, especially severe for luminous massive galaxies, which are strongly clustered. In fact our survey geometry of 38 independent fields will constrain the luminosity function like a contiguous single field survey with two times more area at the same depth. Lyman Break Galaxies at z>7.5 down to m_AB=26.85 (5 sigma) in F125W will be selected as F098M dropouts, using three to five orbits visits that include a total of four filters (F606W, F098M, F125W, F160W) optimized to remove low-redshift interlopers and cool stars. Our data will be highly complementary to a deep field search for high- z galaxies aimed at probing the faint end of the luminosity function, allowing us to disentangle the degeneracy between faint end slope and M_* in a Schechter function fit of the luminosity function. We waive proprietary rights for the data. In addition, we commit to release the coordinates and properties of our z>7.5 candidates within one month from the acquisition of each field.

SpaceRef staff editor.