NASA Hubble Space Telescope Daily Report #5102
HUBBLE SPACE TELESCOPE DAILY REPORT #5102
Continuing to Collect World Class Science
PERIOD COVERED: 5am May 21 – 5am May 24, 2010 (DOY 141/09:00z-144/09:00z)
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS:
12286 – GSAcq(1,2,1) at 141/18:30:00z fails to fine lock backup on FGS 2.
Observation possibly affected: proposal ID# 11704.
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 24 24
FGS REAcq 23 23
OBAD with Maneuver 17 17
SIGNIFICANT EVENTS: (None)
OBSERVATIONS SCHEDULED
WFC3/IR/S/C 12089
Persistence – Part 2
The IR detectors on WFC3, like other IR detectors, trap charge when exposed to sources near or above the full well of the detector diodes. This charge leaks out, producing detectable afterglow images for periods which can last for several hours, depending on the amount of over exposure. These visits, which consist of tungsten lamp exposures of varying durations followed by darks, are intended to provide a better calibration of persistence over the full area of the IR detector of WFC3.
COS/NUV/FUV 12086
Generation of 1-D Fixed Pattern Templates
Tests have shown that application of a 1-D fixed pattern template to a COS spectrum can reduce the fixed pattern noise in G130M or G160M spectra to an equivalent S/N of about 30/1. For this to be occur, the template must be derived from data for the same grating and nearly the same central wavelength as the observation. This is because each grating has a different cross dispersion profile, and different central wavelengths fall at different cross dispersion detector locations. As a result, spectra obtained at each grating and central wavelength setting are derived from different regions of the detectors — each with their own, unique detector features and grid wire shadows.
ACS/WFC 11995
CCD Daily Monitor (Part 2)
This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 320 orbits (20 weeks) from 1 February 2010 to 20 June 2010.
WFC3/IR/S/C 11929
IR Dark Current Monitor
Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).
WFC3/IR 11915
IR Internal Flat Fields
This program is the same as 11433 (SMOV) and depends on the completion of the IR initial alignment (Program 11425). This version contains three instances of 37 internal orbits: to be scheduled early, middle, and near the end of Cycle 17, in order to use the entire 110-orbit allocation.
In this test, we will study the stability and structure of the IR channel flat field images through all filter elements in the WFC3-IR channel. Flats will be monitored, i.e. to capture any temporal trends in the flat fields and delta flats produced. High signal observations will provide a map of the pixel-to-pixel flat field structure, as well as identify the positions of any dust particles.
WFC3/UVIS 11908
Cycle 17: UVIS Bowtie Monitor
Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.
WFC3/UVIS 11907
UVIS Cycle 17 Contamination Monitor
The UV throughput of WFC3 during Cycle 17 is monitored via weekly standard star observations in a subset of key filters covering 200-600nm and F606W, F814W as controls on the red end. The data will provide a measure of throughput levels as a function of time and wavelength, allowing for detection of the presence of possible contaminants.
WFC3/UVIS 11905
WFC3 UVIS CCD Daily Monitor
The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).
COS/NUV 11900
NUV Internal/External Wavelength Scale Monitor
This program monitors the offsets between the wavelength scale set by the internal wavecal versus that defined by absorption lines in external targets. This is accomplished by observing two external radial velocity standard targets: HD187691 with G225M and G285M and HD6655 with G285M and G230L. The two standard targets have little flux in the wavelength range covered by G185M and so Feige 48 (sdO) is observed with this grating. Both Feige 48 and HD6655 are also observed in SMOV. The cenwaves observed in this program are a subset of the ones used during Cycle 17. Observing all cenwaves would require a considerably larger number of orbits. Constraints on scheduling of each target are placed so that each target is observed once every ~2-3 months. Observing the three targets every month would also require a considerably larger number of orbits.
STIS/CC 11847
CCD Bias Monitor-Part 2
Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.
STIS/CC 11845
CCD Dark Monitor Part 2
Monitor the darks for the STIS CCD.
FGS 11788
The Architecture of Exoplanetary Systems
Are all planetary systems coplanar? Concordance cosmogony makes that prediction. It is, however, a prediction of extrasolar planetary system architecture as yet untested by direct observation for main sequence stars other than the Sun. To provide such a test, we propose to carry out FGS astrometric studies on four stars hosting seven companions. Our understanding of the planet formation process will grow as we match not only system architecture, but formed planet mass and true distance from the primary with host star characteristics for a wide variety of host stars and exoplanet masses.
We propose that a series of FGS astrometric observations with demonstrated 1 millisecond of arc per-observation precision can establish the degree of coplanarity and component true masses for four extrasolar systems: HD 202206 (brown dwarf+planet); HD 128311 (planet+planet), HD 160691 = mu Arae (planet+planet), and HD 222404AB = gamma Cephei (planet+star). In each case the companion is identified as such by assuming that the minimum mass is the actual mass. For the last target, a known stellar binary system, the companion orbit is stable only if coplanar with the AB binary orbit.
COS/NUV/FUV 11742
Probing HeII Reionization with GALEX-selected Quasar Sightlines and HST/COS
We propose spectroscopic observations with COS of eight z~3 QSOs that we found to be bright in the far ultraviolet. Our aim is to study intergalactic absorption caused by the onset of the He II Lyman forest. Several lines of evidence suggest that helium reionization occurred at z~3. Understanding this process is critical for a complete picture of the intergalactic medium and its evolution; it also gives clues to hydrogen reionization at z>6. The only direct means of assessing He II reionization is through far-UV observations of the He II Lyman alpha forest. Only 6 sightlines are known to date where this is feasible, despite extensive surveys. Our program is designed to double the number of available sightlines. To this effect, we cross-correlated all known z>2.73 quasars with UV source lists from the GALEX satellite. The selected quasars were all significantly detected in the far UV by GALEX, and their UV colors are similar to those of already known quasars with transparent sightlines. Spectra obtained with COS will allow us to compile the first comprehensive sample of He II absorption spectra probing similar redshifts, enabling a systematic investigation of the He II reionization epoch and the spectral shape of the UV background.
WFC3/UVIS 11732
The Temperature Profiles of Quasar Accretion Disks
We can now routinely measure the size of quasar accretion disks using gravitational microlensing of lensed quasars. At optical wavelengths we observe a size and scaling with black hole mass roughly consistent with thin disk theory but the sizes are larger than expected from the observed optical fluxes. One solution would be to use a flatter temperature profile, which we can study by measuring the wavelength dependence of the disk size over the largest possible wavelength baseline. Thus, to understand the size discrepancy and to probe closer to the inner edge of the disk we need to extend our measurements to UV wavelengths, and this can only be done with HST. For example, in the UV we should see significant changes in the optical/UV size ratio with black hole mass. We propose monitoring 5 lenses spanning a broad range of black hole masses with well-sampled ground based light curves, optical disk size measurements and known GALEX UV fluxes during Cycles 17 and 18 to expand from our current sample of two lenses. We would obtain 5 observations of each target in each Cycle, similar to our successful strategy for the first two targets.
COS/NUV/FUV 11720
Detailed Analysis of Carbon Atmosphere White Dwarfs
We propose to obtain UV spectra for the newly discovered white dwarf stars with a carbon- dominated atmosphere. Model calculations show that these stars emit most of their light in the UV part of the electromagnetic spectrum and that an accurate determination of the flux in this region is crucial for an accurate determination of the atmospheric parameters. It will also provide a unique opportunity to test the atomic data and broadening theory in stellar conditions never met before. This will play a primordial role in our path to understand the origin of these objects as well to obtain a better understanding of the evolution of stars in general. The principal objective we hope to achieve with these observations are 1) obtain accurate surface gravity/mass for these stars, 2) constrain/determine the abundance of other elements (O, He, Mg, Ne etc.), especially oxygen, 3) verify the accuracy of the various theoretical atomic data used in the model calculations, 4) understand the origin and evolution of carbon atmosphere white dwarfs, in particular whether progenitor stars as massive as 10.5 solar masses can produce white dwarfs, rather than supernovae. We propose to observe 5 objects chosen carefully to cover the range of observed properties among carbon atmosphere white dwarfs (effective temperature, surface gravity, abundance of hydrogen/helium and magnetic field).
FGS 11704
The Ages of Globular Clusters and the Population II Distance Scale
Globular clusters are the oldest objects in the universe whose age can be accurately determined. The dominant error in globular cluster age determinations is the uncertain Population II distance scale. We propose to use FGS 1R to obtain parallaxes with an accuracy of 0.2 milliarcsecond for 9 main sequence stars with [Fe/H] < -1.5. This will determine the absolute magnitude of these stars with accuracies of 0.04 to 0.06mag. This data will be used to determine the distance to 24 metal-poor globular clusters using main sequence fitting. These distances (with errors of 0.05 mag) will be used to determine the ages of globular clusters using the luminosity of the subgiant branch as an age indicator. This will yield absolute ages with an accuracy of 5%, about a factor of two improvement over current estimates. Coupled with existing parallaxes for more metal-rich stars, we will be able to accurately determine the age for globular clusters over a wide range of metallicities in order to study the early formation history of the Milky Way and provide an independent estimate of the age of the universe. The Hipparcos database contains only 1 star with [Fe/H] < -1.4 and an absolute magnitude error less than 0.18 mag which is suitable for use in main sequence fitting. Previous attempts at main sequence fitting to metal-poor globular clusters have had to rely on theoretical calibrations of the color of the main sequence. Our HST parallax program will remove this source of possible systematic error and yield distances to metal-poor globular clusters which are significantly more accurate than possible with the current parallax data. The HST parallax data will have errors which are 10 times smaller than the current parallax data. Using the HST parallaxes, we will obtain main sequence fitting distances to 11 globular clusters which contain over 500 RR Lyrae stars. This will allow us to calibrate the absolute magnitude of RR Lyrae stars, a commonly used Population II distance indicator. WFC3/UVIS/IR 11702 Search for Very High-z Galaxies with WFC3 Pure Parallel WFC3 will provide an unprecedented probe to the early universe beyond the current redshift frontier. Here we propose a pure parallel program using this new instrument to search for Lyman-break galaxies at 6.5< z<8.8 and to probe the epoch of reionization, a hallmark event in the history of the early universe. We request 200 orbits, spreading over 30 ~ 50 high Galactic latitude visits (|b|>20deg) that last for 4 orbits and longer, resulting a total survey area of about 140~230 square arcminute. Based on our understanding of the new HST parallel observation scheduling process, we believe that the total number of long-duration pure parallel visits in Cycle 17 should be sufficient to accommodate our program. We waive all proprietary rights to our data, and will also make the enhanced data products public in a timely manner.
(1) We will use both the UVIS and the IR channels, and do not need to seek optical data from elsewhere.
(2) Our program will likely triple the size of the probable candidate samples at z~7 and z~8, and will complement other targeted programs aiming at the similar redshift range.
(3) Being a pure parallel program, our survey will only make very limited demand on the scarce HST resources. More importantly, as the pure parallel pointings will be at random sight-lines, our program will be least affected by the bias due to the large scale structure (“cosmic variance”).
(4) We aim at the most luminous LBG population, and will address the bright-end of the luminosity function at z~8 and z~7. We will constrain the value of L* in particular, which is critical for understanding the star formation process and the stellar mass assembly history in the first few hundred million years of the universe.
(5) The candidates from our survey, most of which will be the brightest ones that any surveys would be able to find, will have the best chance to be spectroscopically confirmed at the current 8–10m telescopes.
(6) We will also find a large number of extremely red, old galaxies at intermediate redshifts, and the fine spatial resolution offered by the WFC3 will enable us constrain their formation history based on the study of their morphology, and hence shed light on their connection to the very early galaxies in the universe.
COS/FUV 11699
On the Evolutionary Status of Extremely Hot Helium Stars – are the O(He) Stars Successors of the R CrB Stars?
We propose UV spectroscopy of the four unique post-AGB stars of spectral type O(He) in order to understand the origin of their peculiar surface abundances. These stars are the only known amongst the hottest post-AGB stars (effective temperatures > 100, 000 K) whose atmospheres are composed of almost pure helium. This chemistry markedly differs from that of the hydrogen-deficient post-AGB evolutionary sequence with objects which have carbon dominated atmospheres (PG1159 stars and Wolf-Rayet central stars).
While PG1159 and Wolf-Rayet stars are the result of a late helium-shell flash, this scenario cannot explain the O(He) stars. Instead, they are possibly double-degenerate mergers. We speculate that the four O(He) stars represent evolved RCrB stars, which also have helium-dominated atmospheres. We aim to determine the C, N, O, and Si abundances precisely, in order to proof this evolutionary link.
COS/NUV/FUV 11698
The Structure and Dynamics of Virgo’s Multi-Phase Intracluster Medium
The dynamical flows of the intracluster medium (ICM) are largely unknown. We propose to map the spatial and kinematic distribution of the warm ICM of the nearby Virgo cluster using the Cosmic Origins Spectrograph. 15 sightlines at a range of impact parameters within the virial radius of the cluster (0.2 – 1.7 Mpc) will be probed for Lyman-alpha absorption and the data compared to blind HI, dust and x-ray surveys to create a multi-phase map of the cluster’s ICM. Absorption line sightlines are commonly 40-100 kpc from a galaxy, allowing the flow of baryons between galaxies and the ICM to be assessed. The velocity distribution of the absorbers will be directly compared to simulations and used to constrain the turbulent motions of the ICM. This proposal will result in the first map of a cluster’s warm ICM and provide important tests for our theoretical understanding of cluster formation and the treatment of gas cooling in cosmological simulations.
WFC3/IR 11696
Infrared Survey of Star Formation Across Cosmic Time
We propose to use the unique power of WFC3 slitless spectroscopy to measure the evolution of cosmic star formation from the end of the reionization epoch at z>6 to the close of the galaxy- building era at z~0.3.Pure parallel observations with the grisms have proven to be efficient for identifying line emission from galaxies across a broad range of redshifts. The G102 grism on WFC3 was designed to extend this capability to search for Ly-alpha emission from the first galaxies. Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will observe about 40 deep (4-5 orbit) fields with the combination of G102 and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.
Our primary science goals at the highest redshifts are: (1) Detect Lya in ~100 galaxies with z>5.6 and measure the evolution of the Lya luminosity function, independent of of cosmic variance; 2) Determine the connection between emission line selected and continuum-break selected galaxies at these high redshifts, and 3) Search for the proposed signature of neutral hydrogen absorption at re-ionization. At intermediate redshifts we will (4) Detect more than 1000 galaxies in Halpha at 0.5< z<1.8 to measure the evolution of the extinction-corrected star formation density across the peak epoch of star formation. This is over an order-of-magnitude improvement in the current statistics, from the NICMOS Parallel grism survey. (5) Trace ``cosmic downsizing" from 0.5< z<2.2; and (6) Estimate the evolution in reddening and metallicty in star- forming galaxies and measure the evolution of the Seyfert population. For hundreds of spectra we will be able to measure one or even two line pair ratios -- in particular, the Balmer decrement and [OII]/[OIII] are sensitive to gas reddening and metallicity. As a bonus, the G102 grism offers the possibility of detecting Lya emission at z=7-8.8. To identify single-line Lya emitters, we will exploit the wide 0.8–1.9um wavelength coverage of the combined G102+G141 spectra. All [OII] and [OIII] interlopers detected in G102 will be reliably separated from true LAEs by the detection of at least one strong line in the G141 spectrum, without the need for any ancillary data. We waive all proprietary rights to our data and will make high-level data products available through the ST/ECF. WFC3/UV/IR 11620 A Quasar Light Echo in the Local Universe? The time history and duty cycle of individual AGN is an important part of their evolution and the growth history of massive black holes, but almost unconstrained on scales between galaxy-interaction timescales (hundreds of Myr) and the scales of years probed by variability measurements. We propose a detailed study of an object which seems to be a large-scale light echo from a QSO-level episode in a nearby galaxy. The Galaxy Zoo morphological survey of SDSS objects has uncovered a peculiar emission-line structure whose spectrum matches the narrow-line region of AGN, despite lying at least 20 kpc from a galaxy whose activity is currently very weak. This is best explained if the nucleus has faded dramatically on time scales of several tens of thousands of years. We propose a suite of imaging and spectroscopic observations to probe its properties, and the time history of this episode of nuclear activity, measuring time scales hitherto unavailable. COS/NUV/FUV 11598 How Galaxies Acquire their Gas: A Map of Multiphase Accretion and Feedback in Gaseous Galaxy Halos We propose to address two of the biggest open questions in galaxy formation – how galaxies acquire their gas and how they return it to the IGM – with a concentrated COS survey of diffuse multiphase gas in the halos of SDSS galaxies at z = 0.15 – 0.35. Our chief science goal is to establish a basic set of observational facts about the physical state, metallicity, and kinematics of halo gas, including the sky covering fraction of hot and cold material, the metallicity of infall and outflow, and correlations with galaxy stellar mass, type, and color – all as a function of impact parameter from 10 – 150 kpc. Theory suggests that the bimodality of galaxy colors, the shape of the luminosity function, and the mass-metallicity relation are all influenced at a fundamental level by accretion and feedback, yet these gas processes are poorly understood and cannot be predicted robustly from first principles. We lack even a basic observational assessment of the multiphase gaseous content of galaxy halos on 100 kpc scales, and we do not know how these processes vary with galaxy properties. This ignorance is presently one of the key impediments to understanding galaxy formation in general. We propose to use the high-resolution gratings G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive column density measurements of a comprehensive suite of multiphase ions in the spectra of 43 z < 1 QSOs lying behind 43 galaxies selected from the Sloan Digital Sky Survey. In aggregate, these sightlines will constitute a statistically sound map of the physical state and metallicity of gaseous halos, and subsets of the data with cuts on galaxy mass, color, and SFR will seek out predicted variations of gas properties with galaxy properties. Our interpretation of these data will be aided by state-of-the-art hydrodynamic simulations of accretion and feedback, in turn providing information to refine and test such models. We will also use Keck, MMT, and Magellan (as needed) to obtain optical spectra of the QSOs to measure cold gas with Mg II, and optical spectra of the galaxies to measure SFRs and to look for outflows. In addition to our other science goals, these observations will help place the Milky Way's population of multiphase, accreting High Velocity Clouds (HVCs) into a global context by identifying analogous structures around other galaxies. Our program is designed to make optimal use of the unique capabilities of COS to address our science goals and also generate a rich dataset of other absorption-line systems WFC3/ACS/IR 11597 Spectroscopy of IR-Selected Galaxy Clusters at 1 < z < 1.5 We propose to obtain WFC3 G141 and G102 slitless spectroscopy of galaxy clusters at 1 < z < 1.5 that were selected from the IRAC survey of the Bootes NDWFS field. Our IRAC survey contains the largest sample of spectroscopically confirmed clusters at z > 1. The WFC3 grism data will measure H-alpha to determine SFR, and fit models to the low resolution continua to determine stellar population histories for the brighter cluster members, and redshifts for the red galaxies too faint for ground-based optical spectroscopy.
WFC3/UVIS 11594
A WFC3 Grism Survey for Lyman Limit Absorption at z=2
We propose to conduct a spectroscopic survey of Lyman limit absorbers at redshifts 1.8 < z < 2.5, using WFC3 and the G280 grism. This proposal intends to complete an approved Cycle 15 SNAP program (10878), which was cut short due to the ACS failure. We have selected 64 quasars at 2.3 < z < 2.6 from the Sloan Digital Sky Survey Spectroscopic Quasar Sample, for which no BAL signature is found at the QSO redshift and no strong metal absorption lines are present at z > 2.3 along the lines of sight. The survey has three main
observational goals. First, we will determine the redshift frequency dn/dz of the LLS over the column density range 16.0 < log(NHI) < 20.3 cm^-2. Second, we will measure the column density frequency distribution f(N) for the partial Lyman limit systems (PLLS) over the column density range 16.0 < log(NHI) < 17.5 cm^-2. Third, we will identify those sightlines which could provide a measurement of the primordial D/H ratio. By carrying out this survey, we can also help place meaningful constraints on two key quantities of cosmological relevance. First, we will estimate the amount of metals in the LLS using the f(N), and ground based observations of metal line transitions. Second, by determining f(N) of the PLLS, we can constrain the amplitude of the ionizing UV background at z~2 to a greater precision. This survey is ideal for a snapshot observing program, because the on-object integration times are all well below 30 minutes, and follow-up observations from the ground require minimal telescope time due to the QSO sample being bright. WFC3/IR 11591 Are Low-Luminosity Galaxies Responsible for Cosmic Reionization? Our group has demonstrated that massive clusters, acting as powerful cosmic lenses, can constrain the abundance and properties of low-luminosity star-forming sources beyond z~6; such sources are thought to be responsible for ending cosmic reionization. The large magnification possible in the critical regions of well-constrained clusters brings sources into view that lie at or beyond the limits of conventional exposures such as the UDF. We have shown that the combination of HST and Spitzer is particularly effective in delivering the physical properties of these distant sources, constraining their mass, age and past star formation history. Indirectly, we therefore gain a valuable glimpse to yet earlier epochs. Recognizing the result (and limitations) of blank field surveys, we propose a systematic search through 10 lensing clusters with ACS/F814W and WFC3/[F110W+F160W] (in conjunction with existing deep IRAC data). Our goal is to measure with great accuracy the luminosity function at z~7 over a range of at least 3 magnitude, based on the identification of about 50 lensed galaxies at 6.5< z<8. Our survey will mitigate cosmic variance and extend the search both to lower luminosities and, by virtue of the WFC3/IRAC combination, to higher redshift. Thanks to the lensing amplification spectroscopic follow-up will be possible and make our findings the most robust prior to the era of JWST and the ELTs. WFC3/ACS/UVIS/IR 11570 Narrowing in on the Hubble Constant and Dark Energy A measurement of the Hubble constant to a precision of a few percent would be a powerful aid to the investigation of the nature of dark energy and a potent “end-to end” test of the present cosmological model. In Cycle 15 we constructed a new streamlined distance ladder utilizing high- quality type Ia supernova data and observations of Cepheids with HST in the near-IR to minimize the dominant sources of systematic uncertainty in past measurements of the Hubble constant and reduce its total uncertainty to a little under 5%. Here we propose to exploit this new route to reduce the remaining uncertainty by more than 30%, translating into an equal reduction in the uncertainty of the equation of state of dark energy. We propose three sets of observations to reach this goal: a mosaic of NGC 4258 with WFC3 in F160W to triple its sample of long period Cepheids, WFC3/F160W observations of the 6 ideal SN Ia hosts to triple their samples of Cepheids, and observations of NGC 5584 the host of a new SN Ia, SN 2007af, to discover and measure its Cepheids and begin expanding the small set of SN Ia luminosity calibrations. These observations would provide the bulk of a coordinated program aimed at making the measurement of the Hubble constant one of the leading constraints on dark energy. STIS/CCD 11567 Boron Abundances in Rapidly Rotating Early-B Stars Models of rotation in early-B stars predict that rotationally driven mixing should deplete surface boron abundances during the main-sequence lifetime of many stars. However, recent work has shown that many boron depleted stars are intrinsically slow rotators for which models predict no depletion should have occurred, while observations of nitrogen in some more rapidly rotating stars show less mixing than the models predict. Boron can provide unique information on the earliest stages of mixing in B stars, but previous surveys have been biased towards narrow- lined stars because of the difficulty in measuring boron abundances in rapidly rotating stars. The two targets observed as part of our Cycle 13 SNAP program 10175, just before STIS failed, demonstrate that it is possible to make useful boron abundance measurements for early-B stars with Vsin(i) above 100 km/s. We propose to extend that survey to a large enough sample of stars to allow statistically significant tests of models of rotational mixing in early-B stars. ACS/WFC3/SBC 11564 Optical and Ultraviolet Photometry of Isolated Neutron Stars We propose ultraviolet and B-band observations of 5 nearby, thermally emitting neutron stars. These data will measure the Rayleigh-Jeans tails of their spectra, providing a vital complement to X-ray spectroscopy and helping to constrain atmospheric models, working toward the ultimate goal of unraveling the physics of neutron stars. With these data we will have good-quality optical and UV data for the full sample of these objects, allowing detailed comparisons between them. Finally, the data should allow us to measure proper motions for one or two objects, and will serve as the reference data for the remaining objects; such proper motions allow ages to be determined for these objects by tracing them back to likely birth locations. WFC3/UV 11556 Investigations of the Pluto System We propose a set of high SNR observations of the Pluto system that will provide improved lightcurves, orbits, and photometric properties of Nix and Hydra. The key photometric result for Nix and Hydra will be a vastly improved lightcurve shape and rotation period to test if the objects are in synchronous rotation or not. A second goal of this program will be to retrieve a new epoch of albedo map for the surface of Pluto. These observations will also improve masses and in some case densities for the bodies in the Pluto system.