Status Report

NASA Hubble Space Telescope Daily Report #5081

By SpaceRef Editor
April 26, 2010
Filed under , ,


PERIOD COVERED: 5am April 22 – 5am April 23, 2010 (DOY 112/09:00z-113/09:00z)


ACS/WFC3 11670

The Host Environments of Type Ia Supernovae in the SDSS Survey

The Sloan Digital Sky Survey Supernova Survey has discovered nearly 500 type Ia supernovae and created a large, unique, and uniform sample of these cosmological tools. As part of a comprehensive study of the supernova hosts, we propose to obtain Hubble ACS images of a large fraction of these galaxies. Integrated colors and spectra will be measured from the ground, but we require high-resolution HST imaging to provide accurate morphologies and color information at the site of the explosion. This information is essential in determining the systematic effects of population age on type Ia supernova luminosities and improving their reliability in measuring dark energy. Recent studies suggest two populations of type Ia supernovae: a class that explodes promptly after star-formation and one that is delayed by billions of years. Measuring the star-formation rate at the site of the supernova from colors in the HST images may be the best way to differentiate between these classes.

COS/FUV 11625

Beyond the Classical Paradigm of Stellar Winds: Investigating Clumping, Rotation and the Weak Wind Problem in SMC O Stars

SMC O stars provide an unrivaled opportunity to probe star formation, evolution, and the feedback of massive stars in an environment similar to the epoch of the peak in star formation history. Two recent breakthroughs in the study of hot, massive stars have important consequences for understanding the chemical enrichment and buildup of stellar mass in the Universe. The first is the realization that rotation plays a major role in influencing the evolution of massive stars and their feedback on the surrounding environment. The second is a drastic downward revision of the mass loss rates of massive stars coming from an improved description of their winds. STIS spectroscopy of SMC O stars combined with state-of-the-art NLTE analyses has shed new light on these two topics. A majority of SMC O stars reveal CNO- cycle processed material brought at their surface by rotational mixing. Secondly, the FUV wind lines of early O stars provide strong indications of the clumped nature of their wind. Moreover, we first drew attention to some late-O dwarfs showing extremely weak wind signatures. Consequently, we have derived mass loss rates from STIS spectroscopy that are significantly lower than the current theoretical predictions used in evolutionary models. Because of the limited size of the current sample (and some clear bias toward stars with sharp-lined spectra), these results must however be viewed as tentative. Thanks to the high efficiency of COS in the FUV range, we propose now to obtain high-resolution FUV spectra with COS of a larger sample of SMC O stars to study systematically rotation and wind properties of massive stars at low metallicity. The analysis of the FUV wind lines will be based on our 2D extension of CMFGEN to model axi-symmetric rotating winds.

COS/FUV 11687

SNAPing Coronal Iron

This is a Snapshot Survey to explore two forbidden lines of highly ionized iron in late-type coronal sources. Fe XII 1349 (T~ 2 MK) and Fe XXI 1354 (T~ 10 MK) — well known to Solar Physics — have been detected in about a dozen cool stars, mainly with HST/STIS. The UV coronal forbidden lines are important because they can be observed with velocity resolution of better than 15 km/s, whereas even the state-of-the-art X-ray spectrometers on Chandra can manage only 300 km/s in the kilovolt band where lines of highly ionized iron more commonly are found. The kinematic properties of hot coronal plasmas, which are of great interest to theorists and modelers, thus only are accessible in the UV at present. The bad news is that the UV coronal forbidden lines are faint, and were captured only in very deep observations with STIS. The good news is that 3rd-generation Cosmic Origins Spectrograph, slated for installation in HST by SM4, in a mere 25 minute exposure with its G130M mode can duplicate the sensitivity of a landmark 25-orbit STIS E140M observation of AD Leo, easily the deepest such exposure of a late-type star so far. Our goal is to build up understanding of the properties of Fe XII and Fe XXI in additional objects beyond the current limited sample: how the lineshapes depend on activity, whether large scale velocity shifts can be detected, and whether the dynamical content of the lines can be inverted to map the spatial morphology of the stellar corona (as in “Doppler Imaging”). In other words, we want to bring to bear in the coronal venue all the powerful tricks of spectroscopic remote sensing, well in advance of the time that this will be possible exploiting the corona’s native X-ray radiation. The 1290-1430 band captured by side A of G130M also contains a wide range of key plasma diagnostics that form at temperatures from below 10, 000 K (neutral lines of CNO), to above 200, 000 K (semi-permitted O V 1371), including the important bright multiplets of C II at 1335 and Si IV at 1400; yielding a diagnostic gold mine for the subcoronal atmosphere. Because of the broad value of the SNAP spectra, beyond the coronal iron project, we waive the normal proprietary rights.

NIC2/WFC3/IR 11548

Infrared Imaging of Protostars in the Orion A Cloud: The Role of Environment in Star Formation

We propose NICMOS and WFC3/IR observations of a sample of 252 protostars identified in the Orion A cloud with the Spitzer Space Telescope. These observations will image the scattered light escaping the protostellar envelopes, providing information on the shapes of outflow cavities, the inclinations of the protostars, and the overall morphologies of the envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron spectra of 75 of the protostars. Combining these new data with existing 3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured with the Spitzer Space Telescope, we will determine the physical properties of the protostars such as envelope density, luminosity, infall rate, and outflow cavity opening angle. By examining how these properties vary with stellar density (i.e. clusters vs. groups vs. isolation) and the properties of the surrounding molecular cloud; we can directly measure how the surrounding environment influences protostellar evolution, and consequently, the formation of stars and planetary systems. Ultimately, this data will guide the development of a theory of protostellar evolution.

STIS/CC 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

STIS/CC 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

WFC3/ACS/IR 11600

Star Formation, Extinction, and Metallicity at 0.7z<1.5: H-Alpha Fluxes and Sizes from a Grism Survey of GOODS-N The global star formation rate (SFR) is ~10x higher at z=1 than today. This could be due to drastically elevated SFR in some fraction of galaxies, such as mergers with central bursts, or a higher SFR across the board. Either means that the conditions in z=1 star forming galaxies could be quite different from local objects. The next step beyond measuring the global SFR is to determine the dependence of SFR, obscuration, metallicity, and size of the star-forming region on galaxy mass and redshift. However, SFR indicators at z=1 typically apply local calibrations for UV, [O II] and far-IR, and do not agree with each other on a galaxy-by-galaxy basis. Extinction, metallicity, and dust properties cause uncontrolled offsets in SFR calibrations. The great missing link is Balmer H-alpha, the most sensitive probe of SFR. We propose a slitless WFC3/G141 IR grism survey of GOODS-N, at 2 orbits/pointing. It will detect Ha+[N II] emission from 0.7z<1.5, to L(Ha) = 1.7 x 10^41 erg/sec at z=1, measuring H-alpha fluxes and sizes for > 600 galaxies, and a small number of higher-redshift emitters. This will produce: an emission-line redshift survey unbiased by magnitude and color selection; star formation rates as a function of galaxy properties, e.g. stellar mass and morphology/mergers measured by ACS; comparisons of SFRs from H-alpha to UV and far-IR indicators; calibrations of line ratios of H-alpha to important nebular lines such as [O II] and H-beta, measuring variations in metallicity and extinction and their effect on SFR estimates; and the first measurement of scale lengths of the H-alpha emitting, star- forming region in a large sample of z~1 sources.

WFC3/IR 11719

A Calibration Database for Stellar Models of Asymptotic Giant Branch Stars

Studies of galaxy formation and evolution rely increasingly on the interpretation and modeling of near-infrared observations. At these wavelengths, the brightest stars are intermediate mass asymptotic giant branch (AGB) stars. These stars can contribute nearly 50% of the integrated luminosity at near infrared and even optical wavelengths, particularly for the younger stellar populations characteristic of high-redshift galaxies (z>1). AGB stars are also significant sources of dust and heavy elements. Accurate modeling of AGB stars is therefore of the utmost importance.

The primary limitation facing current models is the lack of useful calibration data. Current models are tuned to match the properties of the AGB population in the Magellanic Clouds, and thus have only been calibrated in a very narrow range of sub-solar metallicities. Preliminary observations already suggest that the models are overestimating AGB lifetimes by factors of 2-3 at lower metallicities. At higher (solar) metallicities, there are no appropriate observations for calibrating the models.

We propose a WFC3/IR SNAP survey of nearby galaxies to create a large database of AGB populations spanning the full range of metallicities and star formation histories. Because of their intrinsically red colors and dusty circumstellar envelopes, tracking the numbers and bolometric fluxes of AGB stars requires the NIR observations we propose here. The resulting observations of nearby galaxies with deep ACS imaging offer the opportunity to obtain large (100-1000’s) complete samples of AGB stars at a single distance, in systems with well-constrained star formation histories and metallicities.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone. In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system. To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations. With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point. Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system. While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets. The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date. We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups. These objects will likely define the core Kuiper Belt compositional sample for years to come. While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery — both anticipated and not — is extraordinary.

WFC3/UVIS/IR 11662

Improving the Radius-Luminosity Relationship for Broad-Lined AGNs with a New Reverberation Sample

The radius-luminosity (R-L) relationship is currently the fundamental basis for all techniques used to estimate black hole masses in AGNs, in both the nearby and distant universe. However, the current R-L relationship is based on 34 objects that cover a limited range in black hole mass and luminosity. To improve our understanding of black hole growth and evolution, the R-L relationship must be extended to cover a broader range of black hole masses using the technique known as reverberation mapping. To this end, we have been awarded an unprecedented 64 nights on the Lick Observatory 3-m telescope between March 24 and May 31, 2008, to spectroscopically monitor 12 AGNs in order to measure their black hole masses. To properly determine the luminosities of these 12 AGNs, we must correct them for their host-galaxy starlight contributions using high-resolution images. Previous work by Bentz et al. (2006) has shown that the starlight correction to AGN luminosity measurements is an essential component to interpreting the R-L relationship. The correction will be substantial for each of the 12 sources we will monitor, as the AGNs are relatively faint and embedded in nearby, bright galaxies. Starlight corrections are not possible with ground-based images, as the PSF and bulge contributions become indistinguishable under typical seeing conditions, and adaptive optics are not yet operational in the spectral range where the corrections are needed. In addition, spectral decompositions are very model-dependent and are limited by the degree of accuracy to which we understand emission processes and stellar populations in galaxies. Without correcting for starlight, we will be unable to apply the results of our Spring 2008 campaign to the body of knowledge from previous reverberation mapping work. Therefore, we propose to obtain high resolution, high dynamic range images of the host galaxies of the 12 AGNs in our ground-based monitoring sample, as well as one white dwarf which will be used as a PSF model.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)


18843-2 – Installation of FSW Acq Logic B @ 112/1648z


FGS GSAcq 8 8
FGS REAcq 6 6
OBAD with Maneuver 4 4



At 112/16:46z Acq Logic Version B was successfully installed on-orbit. The Guide Star Acquisition at 112/21:10z was successfully performed using the new acquisition logic.

SpaceRef staff editor.