NASA Hubble Space Telescope Daily Report #5053
HUBBLE SPACE TELESCOPE DAILY REPORT #5053
PERIOD COVERED: 5am March 15 – 5am March 16, 2010 (DOY 074/10:00z-075/10:00z)
OBSERVATIONS SCHEDULED
ACS/WFC 11995
CCD Daily Monitor (Part 2)
This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 320 orbits (20 weeks) from 1 February 2010 to 20 June 2010.
ACS/WFC3 11882
CCD Hot Pixel Annealing
All the data for this program is acquired using internal targets (lamps) only, so all of the exposures should be taken during Earth occultation time (but not during SAA passages). This program emulates the ACS pre-flight ground calibration and post launch SMOV testing (program 8948), so that results from each epoch can be directly compared. Extended Pixel Edge Response (EPER) and First Pixel Response (FPR) data will be obtained over a range of signal levels for the Wide Field Channel (WFC). The High Resolution Channel (HRC) visits have been removed since it could not be repaired during SM4.
ACS/WFC3/STIS/CCD 11889
Photometric Cross-Calibration using Stellar Flux Standards
The purpose of this proposal is to: A) Verify the ACS HRC and WFC photometric calibrations with a repeat visit to one of the three primary WDs. B) Measure the change in sensitivity with time for bright stars (which would include any small CTE contributions). C) Continue to investigate the ~2% discrepancy between ACS flux calibration and that of STIS (ACS ISR 2007-06). The goal is to measure any filter bandpass shifts in ACS or rule out the possibility of shifts as the primary contributors to the ACS/STIS discrepancy for cool stars.
COS/FUV 11895
FUV Detector Dark Monitor
The purpose of this proposal is to monitor the FUV detector dark rate by taking long science exposures without illuminating the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.
COS/NUV 11894
NUV Detector Dark Monitor
The purpose of this proposal is to measure the NUV detector dark rate by taking long science exposures with no light on the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.
COS/NUV/FUV 11728
The Impact of Starbursts on the Gaseous Halos of Galaxies
Perhaps the most important (yet uncertain) aspects of galaxy evolution are the processes by which galaxies accrete gas and by which the resulting star formation and black hole growth affects this accreting gas. It is believed that both the form of the accretion and the nature of the feedback change as a function of the galaxy mass. At low mass the gas comes in cold and the feedback is provided by massive stars. At high mass, the gas comes in hot, and the feedback is from an AGN. The changeover occurs near the mass where the galaxy population transitions from star-forming galaxies to red and dead ones. The population of red and dead galaxies is building with cosmic time, and it is believed that feedback plays an important role in this process: shutting down star formation by heating and/or expelling the reservoir of cold halo gas. To investigate these ideas, we propose to use COS far-UV spectra of background QSOs to measure the properties of the halo gas in a sample of galaxies near the transition mass that have undergone starbursts within the past 100 Myr to 1 Gyr. The galactic wind associated with the starburst is predicted to have affected the properties of the gaseous halo. To test this, we will compare the properties of the halos of the post-starburst galaxies to those of a control sample of galaxies matched in mass and QSO impact parameter. Do the halos of the post-starburst galaxies show a higher incidence rate of Ly-Alpha and metal absorption-lines? Are the kinematics of the halo gas more disturbed in the post-starbursts? Has the wind affected the ionization state and/or the metallicity of the halo? These data will provide fresh new insights into the role of feedback from massive stars on the evolution of galaxies, and may also offer clues about the properties of the QSO metal absorption-line systems at high-redshift .
NIC3/WFC3/IR 11149
Characterizing the Stellar Populations in Lyman-Alpha Emitters and Lyman Break Galaxies at 5.7
S/C 11639
Catching Accreting WDs Moving into Their Instability Strip(s)
Our past HST studies of the temperatures of 9 accreting, pulsating white dwarfs in cataclysmic variables show that 3 are in the normal instability strip for single white dwarfs, but the other 6 are much hotter (15, 000-16, 500K). This dual strip has been proposed to be due to mass differences in the white dwarfs related to evolutionary history and driven by the ionization of different elements in their respective driving regions. In 2007, GW Lib (the brightest and best studied of the 6 hot accreting pulsators) and V455 And (the brightest and best studied of the 3 cool accreting pulsators) underwent rare large amplitude dwarf nova outbursts (known to heat the white dwarf) and their pulsations disappeared. We propose COS observations to: a) take advantage of the unprecedented opportunity to view the change in pulsation modes due to cooling of the white dwarf envelope and b) determine the masses of the white dwarfs to test the dual strip theory. In addition, a nova that had its outburst 22 yrs ago has begun non-radial pulsations as it returns to quiescence. We will use COS to determine its temperature in relation to the instability strip for the pulsating white dwarfs in dwarf novae.
S/C 12046
COS FUV DCE Memory Dump
Whenever the FUV detector high voltage is on, count rate and current draw information is collected, monitored, and saved to DCE memory. Every 10 msec the detector samples the currents from the HV power supplies (HVIA, HVIB) and the AUX power supply (AUXI). The last 1000 samples are saved in memory, along with a histogram of the number of occurrences of each current value.
In the case of a HV transient (known as a “crackle” on FUSE), where one of these currents exceeds a preset threshold for a persistence time, the HV will shut down, and the DCE memory will be dumped and examined as part of the recovery procedure. However, if the current exceeds the threshold for less than the persistence time (a “mini-crackle” in FUSE parlance), there is no way to know without dumping DCE memory. By dumping and examining the histograms regularly, we will be able to monitor any changes in the rate of “mini-crackles” and thus learn something about the state of the detector.
STIS/CC 11845
CCD Dark Monitor Part 2
Monitor the darks for the STIS CCD.
WFC3/ACS/UVIS 11603
A Comprehensive Study of Dust Formation in Type II Supernovae with HST, Spitzer, and Gemini
The recent discovery of three extremely bright Type II SNe, (2007it, 2007oc, 2007od) gives us a unique opportunity to combine observations with HST, Spitzer, and Gemini to study the little understood dust formation process in Type II Sne. Priority 1 Spitzer Cycle 5 and band 1 Gemini 2008A time has already been approved for this project. Since late-time Type II Sne are faint and tend to be in crowded fields, we need the high sensitivity and high spatial resolution of ACS and NICMOS/NIC2 for these observations. This project is motivated by the recent detection of large amounts of dust in high redshift galaxies. The dust in these high-z galaxies must come from young, massive stars so Type II Sne could be potential sources. The mechanism and the efficiency of dust condensation in Type II SN ejecta are not well understood, largely due to the lack of observational data. We plan to produce a unique dataset, combining spectroscopy and imaging in the visible, near- and mid-IR covering the key phase, 400-700 days after maximum when dust is known to form in the SN ejecta. Therefore, we are proposing for coordinated HST/NOAO observations (HST ACS, NICMOS/NIC2 & Gemini/GMOS and TReCS) which will be combined with our Spitzer Cycle 5 data to study these new bright Sne. The results of this program will place strong constraints on the formation of dust seen in young high redshift (z>5) galaxies.
WFC3/ACS/UVIS/COS/NUV/STIS 11878 /CCD HST Post-SM4 and Cycle 17 Focal Plane Calibration
This proposal will determine and monitor the SI positions and orientations in V2, V3 space. Accuracy goals are < 50 mas for position and between 0.04 and 0.01 degrees for angle (depending on SI). An astrometric open cluster (M35) is observed using guidestars with positions determined to ~ 20 mas. One or more astrometric targets are placed in the available SIs' major channels and POS TARGs can be used if necessary to step the target(s) over a significant fraction of the detector. This proposal will serve to update the SI positions and angles in the SIAF operational database. WFC3/IR/S/C 11929 IR Dark Current Monitor Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS). WFC3/UVIS 11657 The Population of Compact Planetary Nebulae in the Galactic Disk We propose to secure narrow- and broad-band images of compact planetary nebulae (PNe) in the Galactic Disk to study the missing link of the early phases of post-AGB evolution. Ejected AGB envelopes become PNe when the gas is ionized. PNe expand, and, when large enough, can be studied in detail from the ground. In the interim, only the HST capabilities can resolve their size, morphology, and central stars. Our proposed observations will be the basis for a systematic study of the onset of morphology. Dust properties of the proposed targets will be available through approved Spitzer/IRS spectra, and so will the abundances of the alpha- elements. We will be able thus to explore the interconnection of morphology, dust grains, stellar evolution, and populations. The target selection is suitable to explore the nebular and stellar properties across the galactic disk, and to set constraints on the galactic evolutionary models through the analysis of metallicity and population gradients. WFC3/UVIS 11732 The Temperature Profiles of Quasar Accretion Disks We can now routinely measure the size of quasar accretion disks using gravitational microlensing of lensed quasars. At optical wavelengths we observe a size and scaling with black hole mass roughly consistent with thin disk theory but the sizes are larger than expected from the observed optical fluxes. One solution would be to use a flatter temperature profile, which we can study by measuring the wavelength dependence of the disk size over the largest possible wavelength baseline. Thus, to understand the size discrepancy and to probe closer to the inner edge of the disk we need to extend our measurements to UV wavelengths, and this can only be done with HST. For example, in the UV we should see significant changes in the optical/UV size ratio with black hole mass. We propose monitoring 5 lenses spanning a broad range of black hole masses with well-sampled ground based light curves, optical disk size measurements and known GALEX UV fluxes during Cycles 17 and 18 to expand from our current sample of two lenses. We would obtain 5 observations of each target in each Cycle, similar to our successful strategy for the first two targets. WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS). WFC3/UVIS 11908 Cycle 17: UVIS Bowtie Monitor Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone. WFC3/UVIS 11912 UVIS Internal Flats This proposal will be used to assess the stability of the flat field structure for the UVIS detector throughout the 15 months of Cycle 17. The data will be used to generate on-orbit updates for the delta-flat field reference files used in the WFC3 calibration pipeline, if significant changes in the flat structure are seen. WFC3/UVIS/IR 11700 Bright Galaxies at z>7.5 with a WFC3 Pure Parallel Survey
The epoch of reionization represents a special moment in the history of the Universe as it is during this era that the first galaxies and star clusters are formed. Reionization also profoundly affects the environment where subsequent generations of galaxies evolve. Our overarching goal is to test the hypothesis that galaxies are responsible for reionizing neutral hydrogen. To do so we propose to carry out a pure parallel WFC3 survey to constrain the bright end of the redshift z>7.5 galaxy luminosity function on a total area of 176 arcmin^2 of sky. Extrapolating the evolution of the luminosity function from z~6, we expect to detect about 20 Lyman Break Galaxies brighter than M_* at z~8 significantly improving the current sample of only a few galaxies known at these redshifts. Finding significantly fewer objects than predicted on the basis of extrapolation from z=6 would set strong limits to the brightness of M_*, highlighting a fast evolution of the luminosity function with the possible implication that galaxies alone cannot reionize the Universe. Our observations will find the best candidates for spectroscopic confirmation, that is bright z>7.5 objects, which would be missed by small area deeper surveys. The random pointing nature of the program is ideal to beat cosmic variance, especially severe for luminous massive galaxies, which are strongly clustered. In fact our survey geometry of 38 independent fields will constrain the luminosity function like a contiguous single field survey with two times more area at the same depth. Lyman Break Galaxies at z>7.5 down to m_AB=26.85 (5 sigma) in F125W will be selected as F098M dropouts, using three to five orbits visits that include a total of four filters (F606W, F098M, F125W, F160W) optimized to remove low-redshift interlopers and cool stars. Our data will be highly complementary to a deep field search for high- z galaxies aimed at probing the faint end of the luminosity function, allowing us to disentangle the degeneracy between faint end slope and M_* in a Schechter function fit of the luminosity function. We waive proprietary rights for the data. In addition, we commit to release the coordinates and properties of our z>7.5 candidates within one month from the acquisition of each field.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS:
12220 – REAcq(1,2,1) scheduled at 074/11:34:25z was observed to have made multiple attempts to achieve Coarse Track Data Valid.
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 7 7
FGS REAcq 7 7
OBAD with Maneuver 7 7
SIGNIFICANT EVENTS: (None)