NASA Hubble Space Telescope Daily Report #5038
HUBBLE SPACE TELESCOPE DAILY REPORT #5038
Continuing to Collect World Class Science
PERIOD COVERED: 5am February 22 – 5am February 23, 2010 (DOY 053/10:00z-054/10:00z)
OBSERVATIONS SCHEDULED
ACS/WFC 11679
Probing The Globular Cluster / Low Mass X-ray Binary Connection in Early-type Galaxies At Low X-ray Luminosities
Combined high-resolution images from Hubble and Chandra (CXO) have revolutionized our understanding of extragalactic low-mass X-ray binaries (LMXBs) and globular clusters (GCs), yet their connection in early-type galaxies has remained unstudied at the luminosities of the Galactic LMXBs in GCs. NGC 3379 and NGC 4278 are be the first prototypical elliptical galaxies with complete, deep CXO observations enabling the study of LMXBs at lower luminosities. We propose completing mosaic ACS observations of both galaxies (5 fields per galaxy) that will provide the most comprehensive view into the connection between GCs and LMXBs in early-type galaxies. We will detect ~860 and ~270 GCs in all of NGC 4278 and NGC 3379, respectively. These two galaxies will have among the greatest number of detected GC-LMXBs to date (~130 & 50) and will include the faintest GC-LMXBs in a normal early-type galaxy. We will measure the fraction of GCs which contain LMXBs, as a function of X-ray luminosity, galactocentric distance, color, and GC half-light radius. Using the radial profiles of optical light, GCs, and LMXBs, we will determine the percentage of field LMXBs which may have originated in GCs. We will use the measured GC properties over the entire extent of both galaxies to constrain theories of GC formation and evolution. This is a resubmission of an approved Cycle 15 program (10835) which was only partially completed.
ACS/WFC 11995
CCD Daily Monitor (Part 2)
This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 320 orbits (20 weeks) from 1 February 2010 to 20 June 2010.
COS/FUV 11541
COS-GTO: Cool, Warm, and Hot Gas in the Cosmic Web and in Galaxy Halos
COS G130M and G160M 20, 000 resolution observations will be obtained for 17 QSOs to study cool, warm and hot gas in the cosmic web and in galaxy halos. 5 QSOs with z from 0.177 to 0.574 and sum z = 1.68 will be observed with S/N = 40-50 per resolution element. 12 QSOs with z = 0.286 to 0.669 and sum z = 5.57 will be observed with S/N = 30-40. The observations will allow a wide range of IGM studies including determining the frequency of occurrence of the different types of absorption systems detected, along with studies of the physical conditions and elemental abundances in the different systems. Special emphasis will be given to a study of the properties of highly ionized IGM as traced by O VI, O V, O IV, N V, and C IV. The high S/N of the observations will allow a search for broad Lyman alpha absorption and weak metal line absorption that can be crucial for the evaluation of physical conditions and elemental abundances. Supporting ground based observations will allow studies of the association of the absorbers with galaxy structures along the 17 lines of sight. The overall goal of the program will be to obtain the information that will allow an assessment of the baryonic content of the IGM as revealed by UV and EUV absorption lines seen in the spectra of QSOs.
COS/FUV 11895
FUV Detector Dark Monitor
The purpose of this proposal is to monitor the FUV detector dark rate by taking long science exposures without illuminating the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.
COS/NUV 11894
NUV Detector Dark Monitor
The purpose of this proposal is to measure the NUV detector dark rate by taking long science exposures with no light on the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.
STIS/CCD 11844
CCD Dark Monitor Part 1
The purpose of this proposal is to monitor the darks for the STIS CCD.
STIS/CCD 11846
CCD Bias Monitor-Part 1
The purpose of this proposal is to monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.
STIS/CCD 11849
STIS CCD Hot Pixel Annealing
This purpose of this activity is to repair radiation induced hot pixel damage to the STIS CCD by warming the CCD to the ambient instrument temperature and annealing radiation-damaged pixels.
Radiation damage creates hot pixels in the STIS CCD Detector. Many of these hot pixels can be repaired by warming the CCD from its normal operating temperature near -83 deg. C to the ambient instrument temperature (~ +5 deg. C) for several hours. The number of hot pixels repaired is a function of annealing temperature. The effectiveness of the CCD hot pixel annealing process is assessed by measuring the dark current behavior before and after annealing and by searching for any window contamination effects.
WFC3/ACS/UVIS 11684
The First Proper Motion Measurement for M31: Dynamics and Mass of the Local Group
We will perform observations to determine the proper motion of the Andromeda galaxy M31, which has been sought for almost a century without success. While challenging, this measurement has now become possible due to the availability of existing deep ACS/WFC images of several M31 fields. The requested second epoch images will yield the average shift of the M31 stars with respect to compact galaxies in the background. Our observing strategy uses six different fields (three primary and three coordinated parallel) with two different instruments (ACS and WFC3) to provide a maximum handle on possible systematic effects. The expected result will be sufficiently accurate to: (a) discriminate between different histories for the dynamics of the Local Group; (b) constrain the mass distribution of the Local Group; (c) determine the details of the expected future merger between M31 and the Milky Way; (d) infer the past interaction history between M31 and M33; (e) constrain the internal proper motion kinematics of the M31 spheroid, outer disk, and tidal stream; and (f) obtain a pilot estimate of the M31 distance through the method of rotational parallax.
WFC3/IR 11189
Probing the Early Universe with GRBs
Cosmology is beginning to constrain the nature of the earliest stars and galaxies to form in the Universe, but direct observation of galaxies at z>6 remains highly challenging due to their scarcity, intrinsically small size, and high luminosity distance. GRB afterglows, thanks to their extreme luminosities, offer the possibility of circumventing these normal constraints by providing redshifts and spectral information which couldn’t be obtained through direct observation of the host galaxies themselves. In addition, the association of GRBs with massive stars means that they are an indicator of star formation, and that their hosts are likely responsible for a large proportion of the ionizing radiation during that era. Our collaboration is conducting a campaign to rapidly identify and study candidate very high redshift bursts, bringing to bear a network of 2, 4 and 8m telescopes with near-IR instrumentation. Swift has proven capable of detecting faint, distant GRBs, and reporting accurate positions for many bursts in near real-time. Here we propose to continue our HST program of targeting GRBs at z~6 and above. HST is crucial to this endeavor, allowing us (a) to characterize the basic properties, such as luminosity and color, and in some cases morphologies, of the hosts, which is essential to understanding these primordial galaxies and their relationship to other galaxy populations; and (b) to monitor the late time afterglows and hence compare them to lower-z bursts and test the use of GRBs as standard candles.
WFC3/UV 12077
Monitoring the Aftermath of an Asteroid Impact Event
Our Director’s Discretionary program (GO-12053) to image the newly discovered object P/2010 A2 executed successfully on 2010 Jan 25 and 29 with spectacular results. Hubble has apparently borne witness to the first detection of a collision in the asteroid belt. Hubble imaging with the WFC3 has revealed an object unlike anything ever seen before and with details impossible to detect with any other facility. We request 6 more orbits of Hubble time (1 orbit every 20 days over the next few months, until the object enters Hubble’s solar exclusion zone in late-June 2010) to monitor the evolution of this remarkable object and further clarify the nature of this event. These observations may usher in a new era of searching for and characterizing collisional events within the asteroid belt.
WFC3/UVIS 11594
A WFC3 Grism Survey for Lyman Limit Absorption at z=2
We propose to conduct a spectroscopic survey of Lyman limit absorbers at redshifts 1.8 < z < 2.5, using WFC3 and the G280 grism. This proposal intends to complete an approved Cycle 15 SNAP program (10878), which was cut short due to the ACS failure. We have selected 64 quasars at 2.3 < z < 2.6 from the Sloan Digital Sky Survey Spectroscopic Quasar Sample, for which no BAL signature is found at the QSO redshift and no strong metal absorption lines are present at z > 2.3 along the lines of sight. The survey has three main
observational goals. First, we will determine the redshift frequency dn/dz of the LLS over the column density range 16.0 < log(NHI) < 20.3 cm^-2. Second, we will measure the column density frequency distribution f(N) for the partial Lyman limit systems (PLLS) over the column density range 16.0 < log(NHI) < 17.5 cm^-2. Third, we will identify those sightlines which could provide a measurement of the primordial D/H ratio. By carrying out this survey, we can also help place meaningful constraints on two key quantities of cosmological relevance. First, we will estimate the amount of metals in the LLS using the f(N), and ground based observations of metal line transitions. Second, by determining f(N) of the PLLS, we can constrain the amplitude of the ionizing UV background at z~2 to a greater precision. This survey is ideal for a snapshot observing program, because the on-object integration times are all well below 30 minutes, and follow-up observations from the ground require minimal telescope time due to the QSO sample being bright. WFC3/UVIS 11657 The Population of Compact Planetary Nebulae in the Galactic Disk We propose to secure narrow- and broad-band images of compact planetary nebulae (PNe) in the Galactic Disk to study the missing link of the early phases of post-AGB evolution. Ejected AGB envelopes become PNe when the gas is ionized. PNe expand, and, when large enough, can be studied in detail from the ground. In the interim, only the HST capabilities can resolve their size, morphology, and central stars. Our proposed observations will be the basis for a systematic study of the onset of morphology. Dust properties of the proposed targets will be available through approved Spitzer/IRS spectra, and so will the abundances of the alpha- elements. We will be able thus to explore the interconnection of morphology, dust grains, stellar evolution, and populations. The target selection is suitable to explore the nebular and stellar properties across the galactic disk, and to set constraints on the galactic evolutionary models through the analysis of metallicity and population gradients. WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS). WFC3/UVIS 12018 Ultra-Luminous X-Ray Sources in the Most Metal-Poor Galaxies There is growing observational and theoretical evidence to suggest that Ultra-Luminous X-ray sources (ULX) form preferentially in low metallicity environments. Here we propose a survey of 27 nearby (< 30Mpc) star-forming Extremely Metal Poor Galaxies (Z<5% solar). There are almost no X-ray observations of such low abundance galaxies (3 in the Chandra archive). These are the most metal-deficient galaxies known, and a logical place to find ULX if they favor metal-poor systems. We plan to test recent population synthesis models which predict that ULX should be very numerous in metal-poor galaxies. We will also test the hypothesis that ULX form in massive young star clusters, and ask for HST time to obtain the necessary imaging data. WFC3/UVIS/IR 11662 Improving the Radius-Luminosity Relationship for Broad-Lined AGNs with a New Reverberation Sample The radius-luminosity (R-L) relationship is currently the fundamental basis for all techniques used to estimate black hole masses in AGNs, in both the nearby and distant universe. However, the current R-L relationship is based on 34 objects that cover a limited range in black hole mass and luminosity. To improve our understanding of black hole growth and evolution, the R-L relationship must be extended to cover a broader range of black hole masses using the technique known as reverberation mapping. To this end, we have been awarded an unprecedented 64 nights on the Lick Observatory 3-m telescope between March 24 and May 31, 2008, to spectroscopically monitor 12 AGNs in order to measure their black hole masses. To properly determine the luminosities of these 12 AGNs, we must correct them for their host-galaxy starlight contributions using high-resolution images. Previous work by Bentz et al. (2006) has shown that the starlight correction to AGN luminosity measurements is an essential component to interpreting the R-L relationship. The correction will be substantial for each of the 12 sources we will monitor, as the AGNs are relatively faint and embedded in nearby, bright galaxies. Starlight corrections are not possible with ground-based images, as the PSF and bulge contributions become indistinguishable under typical seeing conditions, and adaptive optics are not yet operational in the spectral range where the corrections are needed. In addition, spectral decompositions are very model-dependent and are limited by the degree of accuracy to which we understand emission processes and stellar populations in galaxies. Without correcting for starlight, we will be unable to apply the results of our Spring 2008 campaign to the body of knowledge from previous reverberation mapping work. Therefore, we propose to obtain high resolution, high dynamic range images of the host galaxies of the 12 AGNs in our ground-based monitoring sample, as well as one white dwarf which will be used as a PSF model. FLIGHT OPERATIONS SUMMARY: Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.) HSTARS: (None) COMPLETED OPS REQUEST: (None) COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 7 7
FGS REAcq 6 6
OBAD with Maneuver 6 6
SIGNIFICANT EVENTS: (None)