NASA Hubble Space Telescope Daily Report #5030
HUBBLE SPACE TELESCOPE DAILY REPORT #5030
Continuing to Collect World Class Science
PERIOD COVERED: 5am February 09 – 5am February 10, 2010 (DOY 040/10:00z-041/10:00z)
OBSERVATIONS SCHEDULED
S/C 12046
COS FUV DCE Memory Dump
Whenever the FUV detector high voltage is on, count rate and current draw information is collected, monitored, and saved to DCE memory. Every 10 msec the detector samples the currents from the HV power supplies (HVIA, HVIB) and the AUX power supply (AUXI). The last 1000 samples are saved in memory, along with a histogram of the number of occurrences of each current value.
In the case of a HV transient (known as a “crackle” on FUSE), where one of these currents exceeds a preset threshold for a persistence time, the HV will shut down, and the DCE memory will be dumped and examined as part of the recovery procedure. However, if the current exceeds the threshold for less than the persistence time (a “mini-crackle” in FUSE parlance), there is no way to know without dumping DCE memory. By dumping and examining the histograms regularly, we will be able to monitor any changes in the rate of “mini-crackles” and thus learn something about the state of the detector.
STIS/CCD 11844
CCD Dark Monitor Part 1
The purpose of this proposal is to monitor the darks for the STIS CCD.
STIS/CCD 11846
CCD Bias Monitor-Part 1
The purpose of this proposal is to monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.
WFC3/ACS/IR 11563
Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to <0.2L* from Deep IR Imaging of the HUDF and HUDF05 Fields The first generations of galaxies were assembled around redshifts z~7-10+, just 500-800 Myr after recombination, in the heart of the reionization of the universe. We know very little about galaxies in this period. Despite great effort with HST and other telescopes, less than ~15 galaxies have been reliably detected so far at z>7, contrasting with the ~1000 galaxies detected to date at z~6, just 200-400 Myr later, near the end of the reionization epoch. WFC3 IR can dramatically change this situation, enabling derivation of the galaxy luminosity function and its shape at z~7-8 to well below L*, measurement of the UV luminosity density at z~7-8 and z~8-9, and estimates of the contribution of galaxies to reionization at these epochs, as well as characterization of their properties (sizes, structure, colors). A quantitative leap in our understanding of early galaxies, and the timescales of their buildup, requires a total sample of ~100 galaxies at z~7-8 to ~29 AB mag. We can achieve this with 192 WFC3 IR orbits on three disjoint fields (minimizing cosmic variance): the HUDF and the two nearby deep fields of the HUDF05. Our program uses three WFC3 IR filters, and leverages over 600 orbits of existing ACS data, to identify, with low contamination, a large sample of over 100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits at z~10. By careful placement of the WFC3 IR and parallel ACS pointings, we also enhance the optical ACS imaging on the HUDF and a HUDF05 field. We stress (1) the need to go deep, which is paramount to define L*, the shape, and the slope alpha of the luminosity function (LF) at these high redshifts; and (2) the far superior performance of our strategy, compared with the use of strong lensing clusters, in detecting significant samples of faint z~7-8 galaxies to derive their luminosity function and UV ionizing flux. Our recent z~7.4 NICMOS results show that wide-area IR surveys, even of GOODS-like depth, simply do not reach faint enough at z~7-9 to meet the LF and UV flux objectives. In the spirit of the HDF and the HUDF, we will waive any proprietary period, and will also deliver the reduced data to STScI. The proposed data will provide a Legacy resource of great value for a wide range of archival science investigations of galaxies at redshifts z~2-9. The data are likely to remain the deepest IR/optical images until JWST is launched, and will provide sources for spectroscopic follow up by JWST, ALMA and EVLA.
WFC3/ACS/IR 11597
Spectroscopy of IR-Selected Galaxy Clusters at 1 < z < 1.5 We propose to obtain WFC3 G141 and G102 slitless spectroscopy of galaxy clusters at 1 < z < 1.5 that were selected from the IRAC survey of the Bootes NDWFS field. Our IRAC survey contains the largest sample of spectroscopically confirmed clusters at z > 1. The WFC3 grism data will measure H-alpha to determine SFR, and fit models to the low resolution continua to determine stellar population histories for the brighter cluster members, and redshifts for the red galaxies too faint for ground-based optical spectroscopy.
WFC3/IR 11666
Chilly Pairs: A Search for the Latest-type Brown Dwarf Binaries and the Prototype Y Dwarf
We propose to use HST/NICMOS to image a sample of 27 of the nearest (< 20 pc) and lowest luminosity T-type brown dwarfs in order to identify and characterize new very low mass binary systems. Only 3 late-type T dwarf binaries have been found to date, despite that fact that these systems are critical benchmarks for evolutionary and atmospheric models at the lowest masses. They are also the most likely systems to harbor Y dwarf companions, an as yet unpopulated putative class of very cold (T < 600 K) brown dwarfs. Our proposed program will more than double the number of T5-T9 dwarfs imaged at high resolution, with an anticipated yield of ~5 new binaries with initial characterization of component spectral types. We will be able to probe separations sufficient to identify systems suitable for astrometric orbit and dynamical mass measurements. We also expect one of our discoveries to contain the first Y-type brown dwarf. Our proposed program complements and augments ongoing ground-based adaptive optics surveys and provides pathway science for JWST. WFC3/IR 12051 Cross Calibration of NICMOS and WFC3 in the Low-Count-Rate Regime NICMOS has played a key role in probing the deep near infrared regime for a decade. It has been the only instrument available to observe faint objects in the near infrared that are not observable from the ground. However, the calibration of NICMOS has turned out to be difficult in the low-count-rate regime. The NICMOS calibration team has extrapolated a power-law to describe the apparent non-linearity in the NICMOS detectors from measurements at ~50-5000 ADU/s to flux counts around 0.1-1 ADU/s. Precise measurements of faint objects (such as SNe Ia at high redshift) require us to reduce the uncertainties from this extrapolation. Here we propose to determine the absolute zeropoint for faint objects by cross-calibrating the WFC3 and NICMOS detectors in observations of early type galaxies at redshifts z>1.
WFC3/IR/S/C 11929
IR Dark Current Monitor
Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).
WFC3/UVIS 11905
WFC3 UVIS CCD Daily Monitor
The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).
WFC3/UVIS 11908
Cycle 17: UVIS Bowtie Monitor
Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS: (None)
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 11 11
FGS REAcq 06 06
OBAD with Maneuver 03 03
SIGNIFICANT EVENTS: (None)