Status Report

NASA Hubble Space Telescope Daily Report #5025

By SpaceRef Editor
February 7, 2010
Filed under , ,


Continuing to Collect World Class Science

PERIOD COVERED: 5am February 2 – 5am February 3, 2010 (DOY 033/10:00z-034/10:00z)


COS/FUV 11541

COS-GTO: Cool, Warm, and Hot Gas in the Cosmic Web and in Galaxy Halos

COS G130M and G160M 20, 000 resolution observations will be obtained for 17 QSOs to study cool, warm and hot gas in the cosmic web and in galaxy halos. 5 QSOs with z from 0.177 to 0.574 and sum z = 1.68 will be observed with S/N = 40-50 per resolution element. 12 QSOs with z = 0.286 to 0.669 and sum z = 5.57 will be observed with S/N = 30-40. The observations will allow a wide range of IGM studies including determining the frequency of occurrence of the different types of absorption systems detected, along with studies of the physical conditions and elemental abundances in the different systems. Special emphasis will be given to a study of the properties of highly ionized IGM as traced by O VI, O V, O IV, N V, and C IV. The high S/N of the observations will allow a search for broad Lyman alpha absorption and weak metal line absorption that can be crucial for the evaluation of physical conditions and elemental abundances. Supporting ground based observations will allow studies of the association of the absorbers with galaxy structures along the 17 lines of sight. The overall goal of the program will be to obtain the information that will allow an assessment of the baryonic content of the IGM as revealed by UV and EUV absorption lines seen in the spectra of QSOs.

COS/FUV 11895

FUV Detector Dark Monitor

The purpose of this proposal is to monitor the FUV detector dark rate by taking long science exposures without illuminating the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.

NIC2/WFC3/IR 11548

Infrared Imaging of Protostars in the Orion A Cloud: The Role of Environment in Star Formation

We propose NICMOS and WFC3/IR observations of a sample of 252 protostars identified in the Orion A cloud with the Spitzer Space Telescope. These observations will image the scattered light escaping the protostellar envelopes, providing information on the shapes of outflow cavities, the inclinations of the protostars, and the overall morphologies of the envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron spectra of 75 of the protostars. Combining these new data with existing 3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured with the Spitzer Space Telescope, we will determine the physical properties of the protostars such as envelope density, luminosity, infall rate, and outflow cavity opening angle. By examining how these properties vary with stellar density (i.e. clusters vs. groups vs. isolation) and the properties of the surrounding molecular cloud; we can directly measure how the surrounding environment influences protostellar evolution, and consequently, the formation of stars and planetary systems. Ultimately, this data will guide the development of a theory of protostellar evolution.

S/C 12046

COS FUV DCE Memory Dump

Whenever the FUV detector high voltage is on, count rate and current draw information is collected, monitored, and saved to DCE memory. Every 10 msec the detector samples the currents from the HV power supplies (HVIA, HVIB) and the AUX power supply (AUXI). The last 1000 samples are saved in memory, along with a histogram of the number of occurrences of each current value.

In the case of a HV transient (known as a “crackle” on FUSE), where one of these currents exceeds a preset threshold for a persistence time, the HV will shut down, and the DCE memory will be dumped and examined as part of the recovery procedure. However, if the current exceeds the threshold for less than the persistence time (a “mini-crackle” in FUSE parlance), there is no way to know without dumping DCE memory. By dumping and examining the histograms regularly, we will be able to monitor any changes in the rate of “mini-crackles” and thus learn something about the state of the detector.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

STIS/MA1/MA2 11857

STIS Cycle 17 MAMA Dark Monitor

This proposal monitors the behavior of the dark current in each of the MAMA detectors.

The basic monitor takes two 1380s ACCUM darks each week with each detector. However, starting Oct 5, pairs are only included for weeks that the LRP has external MAMA observations planned. The weekly pairs of exposures for each detector are linked so that they are taken at opposite ends of the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.

For both detectors, additional blocks of exposures are taken once every six months. These are groups of five 1314s FUV-MAMA Time-Tag darks or five 3x315s NUV ACCUM darks distributed over a single SAA-free interval. This will give more information on the brightness of the FUV MAMA dark current as a function of the amount of time that the HV has been on, and for the NUV MAMA will give a better measure of the short term temperature dependence.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).


20th Anniversary of HST Launch

The 20th anniversary of HST’s launch on April 24, 2010 will be a significant milestone both in the Hubble mission and in the history of U.S. space astronomy. Already plans are in place for many activities surrounding this anniversary that take advantage of the “teachable moment” afforded by this event. A new, high-impact image from Hubble is a necessary component of this mix. We are proposing here to meet that need with new observations of a dramatic region of the Carina Nebula only partially observed previously with Hubble. The release of the large mosaic of the Carina Nebula for HST’s 17th anniversary was one of the largest Hubble images ever released (Fig. 1). It contains numerous dramatic details including the pillar containing HH 901 (Fig. 2) which was itself released as a separate detail image. What is not widely realized, however, is that the HST data in the Carina mosaic is limited to H-alpha only. The oxygen (502 nm) and sulfur (673 nm) images were obtained with the MOSAIC camera at CTIO. These low resolution images were combined with the much higher resolution HST data to produce the final color image composite. When the full mosaic is viewed, the loss of resolution is an acceptable compromise. However, when zooming in on details, the effect is noticeable. We have selected the most dramatic portion to return to with WFC3 to obtain HST resolution in a complete filter set. In order to highlight the new capabilities of WFC3 as well as foreshadowing the capabilities of JWST, we will obtain a full 3-color composite in the IR channel of WFC3 in addition

WFC3/UVIS 11903

UVIS Photometric Zero Points

This proposal obtains the photometric zero points in 53 of the 62 UVIS/WFC3 filters: the 18 broad-band filters, 8 medium-band filters, 16 narrow-band filters, and 11 of the 20 quad filters (those being used in cycle 17). The observations will be primary obtained by observing the hot DA white dwarf standards GD153 and G191-B2B. A redder secondary standard, P330E, will be observed in a subset of the filters to provide color corrections. Repeat observations in 16 of the most widely used cycle 17 filters will be obtained once per month for the first three months, and then once every second month for the duration of cycle 17, alternating and depending on target availability. These observations will enable monitoring of the stability of the photometric system. Photometric transformation equations will be calculated by comparing the photometry of stars in two globular clusters, 47 Tuc and NGC 2419, to previous measurements with other telescopes/instruments.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).

WFC3/UVIS 11907

UVIS Cycle 17 Contamination Monitor

The UV throughput of WFC3 during Cycle 17 is monitored via weekly standard star observations in a subset of key filters covering 200-600nm and F606W, F814W as controls on the red end. The data will provide a measure of throughput levels as a function of time and wavelength, allowing for detection of the presence of possible contaminants.

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone. In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system. To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations. With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point. Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system. While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets. The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date. We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups. These objects will likely define the core Kuiper Belt compositional sample for years to come. While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery — both anticipated and not — is extraordinary.

ACS/WFC 11995

CCD Daily Monitor (Part 2)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 320 orbits (20 weeks) from 1 February 2010 to 20 June 2010.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)


12180 GSAcq (1,2,1) @033/23:20:33z and REAcqs @034/00:56z, 034/02:31:50z, 034/04:51:39z, 034/05:43:41z and 034/07:19:21z resulted in fine lock backup (2,0,2)

Observations possibly affected: COS #12-44 & WFC3 #71-73 Proposal #11541; ACS #48-53 Proposal #11995; STIS #13 Proposal #11844; STIS #14-16 Proposal #11846; STIS #17 Proposal #11857

For DOY 023

12179 REAcq (2,1,1) takes 2 attempts to achieve FL @ 023/19:38:59z

Observations possibly affected: WFC3 #193-194 Proposal #11644



FGS GSAcq 06 06
FGS REAcq 08 08
OBAD with Maneuver 04 04


SpaceRef staff editor.