Status Report

NASA Hubble Space Telescope Daily Report #5021

By SpaceRef Editor
January 29, 2010
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #5021

Continuing to Collect World Class Science

PERIOD COVERED: 5am January 27 – 5am January 28, 2010 (DOY 027/10:00z-028/10:00z)

OBSERVATIONS SCHEDULED

ACS/WFC3 11879

CCD Daily Monitor (Part 1)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 352 orbits (22 weeks) from 31 August 2009 to 31 January 2010.

STIS/CCD 11634

Probing the Collimation of Pristine Post-AGB Jets with STIS

The shaping of planetary and protoplanetary nebulae (PNe and PPNe) is probably the most exciting yet least understood problem in the late evolution of ~1-8 solar mass stars. An increasing number of astronomers believe that fast jet-like winds ejected in the PPN phase are responsible for carving out the diverse shapes in the dense envelopes of the Asymptotic Giant Branch (AGB) stars. To date, the properties of these post-AGB jets have not been characterized and, indeed, their launching/collimation mechanism is still subject to controversial debate. This is due to the lack of the direct observations probing the spatio-kinematic structure of post-AGB winds in the stellar vicinity (~10e16cm), which is only possible with HST+STIS.

Recently, STIS observations have allowed us for the first time the DIRECT study of the structure and kinematics of the elusive post-AGB winds in one PPN, He3-1475 (Sanchez Contreras & Sahai 2001). Those winds have been discovered through H-alpha blue-shifted absorption features in the inner 0.3″-0.7″ of the nebula. These STIS observations have revealed an ultra-fast collimated outflow relatively unaffected by the interaction with the AGB wind that is totally hidden in ground-based spectroscopic observations and HST images. The discovery of the pristine ultra-fast (~2300km/s) jet in He3-1475 is the first observational confirmation of the presence of collimated outflows as close as ~10e16cm from the central star. Most importantly, the spatio-kinematic structure of the ultra-fast jet clearly rules out hydrodynamical collimation alone and favors magnetic wind collimation. Therefore, STIS observations provide a unique method of probing the structure, kinematics, and collimation mechanism of the elusive post-AGB winds. We now propose similar observations for a sample of bipolar PPNe with ongoing post-AGB ejections in order to investigate the frequency of jets like those in He3-1475 in other PPNe and elucidate their nature and collimation mechanism. The observational characterization of these winds is indispensable for understanding this violent and important phase of post-AGB evolution.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

STIS/MA1/MA2 11857

STIS Cycle 17 MAMA Dark Monitor

This proposal monitors the behavior of the dark current in each of the MAMA detectors.

The basic monitor takes two 1380s ACCUM darks each week with each detector. However, starting Oct 5, pairs are only included for weeks that the LRP has external MAMA observations planned. The weekly pairs of exposures for each detector are linked so that they are taken at opposite ends of the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.

For both detectors, additional blocks of exposures are taken once every six months. These are groups of five 1314s FUV-MAMA Time-Tag darks or five 3x315s NUV ACCUM darks distributed over a single SAA-free interval. This will give more information on the brightness of the FUV MAMA dark current as a function of the amount of time that the HV has been on, and for the NUV MAMA will give a better measure of the short term temperature dependence.

WFC3/ACS/IR 11677

Is 47 Tuc Young? Measuring its White Dwarf Cooling Age and Completing a Hubble Legacy

With this proposal we will firmly establish the age of 47 Tuc from its cooling white dwarfs. 47 Tuc is the nearest and least reddened of the metal-rich disk globular clusters. It is also the template used for studying the giant branches of nearby resolved galaxies. In addition, the age sensitive magnitude spread between the main sequence turnoff and horizontal branch is identical for 47 Tuc, two bulge globular clusters and the bulge field population. A precise relative age constraint for 47 Tuc, compared to the halo clusters M4 and NGC 6397, both of which we recently dated via white dwarf cooling, would therefore constrain when the bulge formed relative to the old halo globular clusters. Of particular interest is that with the higher quality ACS data on NGC 6397, we are now capable with the technique of white dwarf cooling of determining ages to an accuracy of +/-0.4 Gyrs at the 95% confidence level. Ages derived from the cluster turnoff are not currently capable of reaching this precision. The important role that 47 Tuc plays in galaxy formation studies, and as the metal-rich template for the globular clusters, makes the case for a white dwarf cooling age for this metal-rich cluster compelling.

Several recent analyses have suggested that 47 Tuc is more than 2 Gyrs younger than the Galactic halo. Others have suggested an age similar to that of the most metal poor globular clusters. The current situation is clearly uncertain and obviously a new approach to age dating this important cluster is required.

With the observations of 47 Tuc, this project will complete a legacy for HST. It will be the third globular cluster observed for white dwarf cooling; the three covering almost the full metallicity range of the cluster system. Unless JWST has its proposed bluer filters (700 and 900 nm) this science will not be possible perhaps for decades until a large optical telescope is again in space. Ages for globular clusters from the main sequence turnoff are less precise than those from white dwarf cooling making the science with the current proposal truly urgent.

WFC3/IR 11189

Probing the Early Universe with GRBs

Cosmology is beginning to constrain the nature of the earliest stars and galaxies to form in the Universe, but direct observation of galaxies at z>6 remains highly challenging due to their scarcity, intrinsically small size, and high luminosity distance. GRB afterglows, thanks to their extreme luminosities, offer the possibility of circumventing these normal constraints by providing redshifts and spectral information which couldn’t be obtained through direct observation of the host galaxies themselves. In addition, the association of GRBs with massive stars means that they are an indicator of star formation, and that their hosts are likely responsible for a large proportion of the ionizing radiation during that era. Our collaboration is conducting a campaign to rapidly identify and study candidate very high redshift bursts, bringing to bear a network of 2, 4 and 8m telescopes with near-IR instrumentation. Swift has proven capable of detecting faint, distant GRBs, and reporting accurate positions for many bursts in near real-time. Here we propose to continue our HST program of targeting GRBs at z~6 and above. HST is crucial to this endeavor, allowing us (a) to characterize the basic properties, such as luminosity and color, and in some cases morphologies, of the hosts, which is essential to understanding these primordial galaxies and their relationship to other galaxy populations; and (b) to monitor the late time afterglows and hence compare them to lower-z bursts and test the use of GRBs as standard candles.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).

WFC3/UVIS 11577

Opening New Windows on the Antennae with WFC3

We propose to use WFC3 to provide key observations of young star clusters in “The Antennae” (NGC4038/39). Of prime importance is the WFC3’s ability to push the limiting UV magnitude FIVE mag deeper than our previous WFPC2 observations. This corresponds to pushing the limiting cluster mass from ~10**5 to ~10**3 solar masses for cluster ages ~10**8 yrs. In addition, the much wider field of view of the WFC3 IR channel will allow us to map out both colliding disks rather than just the Overlap Region between them. This will be especially important for finding the youngest clusters that are still embedded in their placental cocoons. The extensive set of narrow-band filters will provide an effective means for determining the properties of shocks, which are believed to be a primary triggering mechanism for star formation. We will also use ACS in parallel with WFC3 to observe portions of both the northern and southern tails at no additional orbital cost. Finally, one additional primary WFC3 orbit will be used to supplement existing HST observations of the star-forming “dwarf” galaxy at the end of the southern tail. Hence, when completed we will have full UBVI + H_alpha coverage (or more for the main galaxy) of four different environments in the Antennae. In conjunction with the extensive multi- wavelength database we have collected (both HST and ground based) these observations will provide answers to fundamental questions such as: How do these clusters form and evolve? How is star formation triggered? How do star clusters affect the local and global ISM, and the evolution of the galaxy as a whole? The Antennae galaxies are the nearest example of a major disk–disk merger, and hence may represent our best chance for understanding how mergers form tremendous numbers of clusters and stars, both in the local universe and during galaxy assembly at high redshift.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone. In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system. To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations. With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point. Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system. While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets. The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date. We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups. These objects will likely define the core Kuiper Belt compositional sample for years to come. While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery — both anticipated and not — is extraordinary.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 6 6
FGS REAcq 9 9
OBAD with Maneuver 6 6

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.