Status Report

NASA Hubble Space Telescope Daily Report #5003

By SpaceRef Editor
December 31, 2009
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #5003

Continuing to Collect World Class Science

PERIOD COVERED: 5am December 30 – 5am December 31, 2009 (DOY 364/10:00z-365/10:00z)

OBSERVATIONS SCHEDULED

ACS/WFC3 11879

CCD Daily Monitor (Part 1)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 352 orbits (22 weeks) from 31 August 2009 to 31 January 2010.

COS/NUV/FUV 11741

Probing Warm-Hot Intergalactic Gas at 0.5 < z < 1.3 with a Blind Survey for O VI, Ne VIII, Mg X, and Si XII Absorption Systems Currently we can only account for half of the baryons (or less) expected to be found in the nearby universe based on D/H and CMB observations. This “missing baryons problem” is one of the highest-priority challenges in observational extragalatic astronomy. Cosmological simulations suggest that the baryons are hidden in low-density, shock-heated intergalactic gas in the log T = 5 – 7 range, but intensive UV and X-ray surveys using O VI, O VII, and O VIII absorption lines have not yet confirmed this prediction. We propose to use COS to carry out a sensitive survey for Ne VIII and Mg X absorption in the spectra of nine QSOs at z(QSO) > 0.89. For the three highest-redshift QSOs, we will also search for Si XII. This survey will provide more robust constraints on the quantity of baryons in warm-hot intergalactic gas at 0.5 < z < 1.3, and the data will provide rich constraints on the metal enrichment, physical conditions, and nature of a wide variety of QSO absorbers in addition to the warm-hot systems. By comparing the results to other surveys at lower redshifts (with STIS, FUSE, and from the COS GTO programs), the project will also enable the first study of how these absorbers evolve with redshift at z < 1. By combining the program with follow-up galaxy redshift surveys, we will also push the study of galaxy-absorber relationships to higher redshifts, with an emphasis on the distribution of the WHIM with respect to the large-scale matter distribution of the universe. STIS/CCD 11703 The Nature of the Black Hole in a NGC 4472 Globular Cluster and the Origin of Its Broad [OIII] Emission We propose to use STIS to obtain optical spectroscopy at high spatial resolution of the black hole-hosting globular cluster RZ2109 in the Virgo elliptical NGC 4472. This is motivated by our very recent discovery broad [OIII] 4959, 5007 emission with a width of several thousand km/s in this globular cluster. The STIS spectroscopy will enable us to determine if the very broad [OIII] emission is due to material driven at high velocity from the central accreting black hole across the globular cluster, or if the velocity widths are due to gravitational motions very close to the central black hole. In the former case, the [OIII] emission should extend over a few-tenths of an arcsecond and be spatially resolved by HST and STIS, while in the latter case, the emission lines will be unresolved. Distinguishing between these two possibilities will allow us to – 1) determine whether the black hole is of intermediate mass or a stellar mass, and thereby whether the black hole mass – sigma relation extends to globular cluster masses, 2) test models of black hole formation and evolution in dense stellar systems, and 3) address the nature of accretion in the high luminosity black-hole X-ray source, and constrain the feedback processes from luminous black holes into their surrounding medium in dense stellar systems. STIS/CCD 11844 CCD Dark Monitor Part 1 The purpose of this proposal is to monitor the darks for the STIS CCD. STIS/CCD 11846 CCD Bias Monitor-Part 1 The purpose of this proposal is to monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns. WFC3/ACS/IR 11584 Resolving the Smallest Galaxies with ACS An order of magnitude more dwarf galaxies are expected to inhabit the Local Group, based on currently accepted galaxy formation models, than have been observed. This discrepancy has been noted in environments ranging from the field to rich clusters, with evidence emerging that lower density regions contain fewer dwarfs per giant than higher density regions, in further contrast to model predictions. However, there is no complete census of the faintest dwarf galaxies in any environment. The discovery of the smallest and faintest dwarfs is hampered by the limitations in detecting such compact or low surface brightness galaxies, and this is compounded by the great difficulty in determining accurate distances to, or ascertaining group membership for, such faint objects. The M81 group provides a powerful means for establishing membership for faint galaxies in a low density region. With a distance modulus of 27.8, the tip of the red giant branch (TRGB) appears at I ~ 24, just within the reach of ground based surveys. We have completed a 65 square degree survey in the region around M81 with the CFHT/MegaCam. Half of our survey was completed before Cycle 16 and we were awarded time with WFPC2 to observe 15 new candidate dwarf galaxy group members in F606W and F814W bands in order to construct color-magnitude diagrams from which to measure accurate TRGB distances and determine star formation and metallicity histories. The data obtained show that 8 – 9 of these objects are galaxies at the same distance as M81. In completing our survey, we have discovered an additional 8 candidate galaxies we propose to image with ACS in order to measure TRGB distances and establish membership. We also wish to re-observe our smallest candidate group member and a tidal dwarf candidate with deeper observations made possible with ACS. Once membership has been established for this second set of candidates, we will have a complete census of the dwarf galaxy population in the M8 group to M_r ~ -10, allowing us to obtain a firm measurement of the luminosity function faint-end slope, and, combined with previous HST data, to provide a complete inventory of the age and abundance properties for the collapsed core of the M81 group. WFC3/IR 11108 Near Infrared Observations of a Sample of z~6.5-6.7 Galaxies The majority of the most distant galaxies discovered to date have been found by strong Lyman alpha emission at red optical wavelengths. An accurate estimate of the star formation rates for these objects requires a measurement of the line-free UV continuum, which must be taken at infrared wavelengths. Here we propose to obtain imaging with WFC3 in the F140W filter for a sample of 9 Lyman alpha galaxies with redshifts z~6.5 up to z=6.740 from a complete, flux-limited widefield narrowband and multi-color survey conducted on the 8-m Subaru Telescope. This program will investigate galaxy morphologies and star formation for a uniform sample of the highest redshift galaxies now known. WFC3/IR 11666 Chilly Pairs: A Search for the Latest-type Brown Dwarf Binaries and the Prototype Y Dwarf We propose to use HST/NICMOS to image a sample of 27 of the nearest (< 20 pc) and lowest luminosity T-type brown dwarfs in order to identify and characterize new very low mass binary systems. Only 3 late-type T dwarf binaries have been found to date, despite that fact that these systems are critical benchmarks for evolutionary and atmospheric models at the lowest masses. They are also the most likely systems to harbor Y dwarf companions, an as yet unpopulated putative class of very cold (T < 600 K) brown dwarfs. Our proposed program will more than double the number of T5-T9 dwarfs imaged at high resolution, with an anticipated yield of ~5 new binaries with initial characterization of component spectral types. We will be able to probe separations sufficient to identify systems suitable for astrometric orbit and dynamical mass measurements. We also expect one of our discoveries to contain the first Y-type brown dwarf. Our proposed program complements and augments ongoing ground-based adaptive optics surveys and provides pathway science for JWST. WFC3/IR 11696 Infrared Survey of Star Formation Across Cosmic Time We propose to use the unique power of WFC3 slitless spectroscopy to measure the evolution of cosmic star formation from the end of the reionization epoch at z>6 to the close of the galaxy-building era at z~0.3.Pure parallel observations with the grisms have proven to be efficient for identifying line emission from galaxies across a broad range of redshifts. The G102 grism on WFC3 was designed to extend this capability to search for Ly-alpha emission from the first galaxies. Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will observe about 40 deep (4-5 orbit) fields with the combination of G102 and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

Our primary science goals at the highest redshifts are: (1) Detect Lya in ~100 galaxies with z>5.6 and measure the evolution of the Lya luminosity function, independent of of cosmic variance; 2) Determine the connection between emission line selected and continuum-break selected galaxies at these high redshifts, and 3) Search for the proposed signature of neutral hydrogen absorption at re-ionization. At intermediate redshifts we will (4) Detect more than 1000 galaxies in Halpha at 0.5< z<1.8 to measure the evolution of the extinction-corrected star formation density across the peak epoch of star formation. This is over an order-of-magnitude improvement in the current statistics, from the NICMOS Parallel grism survey. (5) Trace ``cosmic downsizing" from 0.5< z<2.2; and (6) Estimate the evolution in reddening and metallicty in star-forming galaxies and measure the evolution of the Seyfert population. For hundreds of spectra we will be able to measure one or even two line pair ratios -- in particular, the Balmer decrement and [OII]/[OIII] are sensitive to gas reddening and metallicity. As a bonus, the G102 grism offers the possibility of detecting Lya emission at z=7-8.8. To identify single-line Lya emitters, we will exploit the wide 0.8–1.9um wavelength coverage of the combined G102+G141 spectra. All [OII] and [OIII] interlopers detected in G102 will be reliably separated from true LAEs by the detection of at least one strong line in the G141 spectrum, without the need for any ancillary data. We waive all proprietary rights to our data and will make high-level data products available through the ST/ECF. WFC3/IR/S/C 11929 IR Dark Current Monitor Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS). WFC3/UVIS 11565 A Search for Astrometric Companions to Very Low-Mass, Population II Stars We propose to carry out a Snapshot search for astrometric companions in a subsample of very low-mass, halo subdwarfs identified within 120 parsecs of the Sun. These ultra-cool M subdwarfs are local representatives of the lowest-mass H burning objects from the Galactic Population II. The expected 3-4 astrometric doubles that will be discovered will be invaluable in that they will be the first systems from which gravitational masses of metal-poor stars at the bottom of the main sequence can be directly measured. WFC3/UVIS 11661 The Black Hole Mass – Bulge Luminosity Relationship for the Nearest Reverberation- Mapped AGNs We propose to obtain WFC3 host galaxy images of the eight nearest AGNs with masses from reverberation mapping, and one star as a PSF model. These images will allow us to determine with unprecedented accuracy the bulge luminosities of the host galaxies, a goal which is not achievable from the ground due to the blurring of the very bright PSF component under typical, and even very good, seeing conditions. High-resolution ACS images of the host galaxies of more luminous AGNs reveal that the black hole mass- bulge luminosity and black hole mass-bulge mass relationships for AGNs are not well constrained and arise from what appear to be fundamentally flawed data sets. With the addition of the images proposed here to our current sample of ACS images, we will be able to extend our determinations of the black hole mass-bulge luminosity and black hole mass-bulge mass relationships for AGNs by an order of magnitude and test our preliminary results for these fundamentally important relationships against those previously determined for quiescent galaxies. WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS). WFC3/UVIS/IR 11644 A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone. In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system. To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations. With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point. Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system. While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets. The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date. We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups. These objects will likely define the core Kuiper Belt compositional sample for years to come. While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery — both anticipated and not — is extraordinary. WFC3/UVIS/IR 11700 Bright Galaxies at z>7.5 with a WFC3 Pure Parallel Survey

The epoch of reionization represents a special moment in the history of the Universe as it is during this era that the first galaxies and star clusters are formed. Reionization also profoundly affects the environment where subsequent generations of galaxies evolve. Our overarching goal is to test the hypothesis that galaxies are responsible for reionizing neutral hydrogen. To do so we propose to carry out a pure parallel WFC3 survey to constrain the bright end of the redshift z>7.5 galaxy luminosity function on a total area of 176 arcmin^2 of sky. Extrapolating the evolution of the luminosity function from z~6, we expect to detect about 20 Lyman Break Galaxies brighter than M_* at z~8 significantly improving the current sample of only a few galaxies known at these redshifts. Finding significantly fewer objects than predicted on the basis of extrapolation from z=6 would set strong limits to the brightness of M_*, highlighting a fast evolution of the luminosity function with the possible implication that galaxies alone cannot reionize the Universe. Our observations will find the best candidates for spectroscopic confirmation, that is bright z>7.5 objects, which would be missed by small area deeper surveys. The random pointing nature of the program is ideal to beat cosmic variance, especially severe for luminous massive galaxies, which are strongly clustered. In fact our survey geometry of 38 independent fields will constrain the luminosity function like a contiguous single field survey with two times more area at the same depth. Lyman Break Galaxies at z>7.5 down to m_AB=26.85 (5 sigma) in F125W will be selected as F098M dropouts, using three to five orbits visits that include a total of four filters (F606W, F098M, F125W, F160W) optimized to remove low-redshift interlopers and cool stars. Our data will be highly complementary to a deep field search for high-z galaxies aimed at probing the faint end of the luminosity function, allowing us to disentangle the degeneracy between faint end slope and M_* in a Schechter function fit of the luminosity function. We waive proprietary rights for the data. In addition, we commit to release the coordinates and properties of our z>7.5 candidates within one month from the acquisition of each field.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 8 8
FGS REAcq 5 5
OBAD with Maneuver 5 5

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.