Status Report

NASA Hubble Space Telescope Daily Report #4997

By SpaceRef Editor
December 23, 2009
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #4997

Continuing to Collect World Class Science

PERIOD COVERED: 5am December 21 – 5am December 22, 2009 (DOY 355/10:00z-356/10:00z)

OBSERVATIONS SCHEDULED

ACS/WFC3 11879

CCD Daily Monitor (Part 1)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 352 orbits (22 weeks) from 31 August 2009 to 31 January 2010.

ACS/WFC3 11882

CCD Hot Pixel Annealing

All the data for this program is acquired using internal targets (lamps) only, so all of the exposures should be taken during Earth occultation time (but not during SAA passages). This program emulates the ACS pre-flight ground calibration and post launch SMOV testing (program 8948), so that results from each epoch can be directly compared. Extended Pixel Edge Response (EPER) and First Pixel Response (FPR) data will be obtained over a range of signal levels for the Wide Field Channel (WFC). The High Resolution Channel (HRC) visits have been removed since it could not be repaired during SM4.

COS/FUV 11541

COS-GTO: Cool, Warm, and Hot Gas in the Cosmic Web and in Galaxy Halos

COS G130M and G160M 20, 000 resolution observations will be obtained for 17 QSOs to study cool, warm and hot gas in the cosmic web and in galaxy halos. 5 QSOs with z from 0.177 to 0.574 and sum z = 1.68 will be observed with S/N = 40-50 per resolution element. 12 QSOs with z = 0.286 to 0.669 and sum z = 5.57 will be observed with S/N = 30-40. The observations will allow a wide range of IGM studies including determining the frequency of occurrence of the different types of absorption systems detected, along with studies of the physical conditions and elemental abundances in the different systems. Special emphasis will be given to a study of the properties of highly ionized IGM as traced by O VI, O V, O IV, N V, and C IV. The high S/N of the observations will allow a search for broad Lyman alpha absorption and weak metal line absorption that can be crucial for the evaluation of physical conditions and elemental abundances. Supporting ground based observations will allow studies of the association of the absorbers with galaxy structures along the 17 lines of sight. The overall goal of the program will be to obtain the information that will allow an assessment of the baryonic content of the IGM as revealed by UV and EUV absorption lines seen in the spectra of QSOs.

COS/FUV 11625

Beyond the Classical Paradigm of Stellar Winds: Investigating Clumping, Rotation and the Weak Wind Problem in SMC O Stars

SMC O stars provide an unrivaled opportunity to probe star formation, evolution, and the feedback of massive stars in an environment similar to the epoch of the peak in star formation history. Two recent breakthroughs in the study of hot, massive stars have important consequences for understanding the chemical enrichment and buildup of stellar mass in the Universe. The first is the realization that rotation plays a major role in influencing the evolution of massive stars and their feedback on the surrounding environment. The second is a drastic downward revision of the mass loss rates of massive stars coming from an improved description of their winds. STIS spectroscopy of SMC O stars combined with state-of-the-art NLTE analyses has shed new light on these two topics. A majority of SMC O stars reveal CNO-cycle processed material brought at their surface by rotational mixing. Secondly, the FUV wind lines of early O stars provide strong indications of the clumped nature of their wind. Moreover, we first drew attention to some late-O dwarfs showing extremely weak wind signatures. Consequently, we have derived mass loss rates from STIS spectroscopy that are significantly lower than the current theoretical predictions used in evolutionary models. Because of the limited size of the current sample (and some clear bias toward stars with sharp-lined spectra), these results must however be viewed as tentative. Thanks to the high efficiency of COS in the FUV range, we propose now to obtain high-resolution FUV spectra with COS of a larger sample of SMC O stars to study systematically rotation and wind properties of massive stars at low metallicity. The analysis of the FUV wind lines will be based on our 2D extension of CMFGEN to model axi-symmetric rotating winds.

COS/FUV 11895

FUV Detector Dark Monitor

The purpose of this proposal is to monitor the FUV detector dark rate by taking long science exposures without illuminating the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.

COS/NUV 11894

NUV Detector Dark Monitor

The purpose of this proposal is to measure the NUV detector dark rate by taking long science exposures with no light on the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.

NIC2/STIS/CCD 10897

Coronagraphic Imaging of the Submillimeter Debris Disk of a 200Myr-Old M-Dwarf

A recent sub-millimeter survey has unambiguously discovered a new debris disk around the M0.5 dwarf GJ842.2 which is 200 Myr old. Reanalysis of the IRAS data has shown that there is also a 25 micron excess toward this star indicating warm dust close to the star. It is also only the second debris disk found among M-dwarfs that constitute 70 % of the stars in the Galaxy. Collisional and Poynting-Roberston timescale arguments indicate that the cold grains detected in the sub-mm are “primordial”, i.e. original grains from the protoplanetary phase. The disk around GJ842.2 is thus unique in terms of the presence of dust at such a late stage of evolution and presents two conundrums: why did it retain so much primordial dust at large distances, and why does it continue to produce dust close to the star? We propose to conduct high contrast NICMOS coronagraphic imaging of GJ842.2 to determine the spatial distribution of the small reflecting grains and test the various scenarios which might explain the IRAS and sub- mm data e.g. resonant trapping of dust by planets or “sandblasting” by interstellar medium grains working more aggressively on a low-luminosity star than on an A-type star like Beta Pic. Also, we would search for an evolutionary sequence between GJ842.2 and the only other M-dwarf with a disk resolved by HST, the 10 Myr old AU Mic system.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

WFC3/ACS/UVIS/IR/STIS/CCD 11653

SAINTS – Supernova 1987A INTensive Survey

SAINTS is a program to observe SN 1987A, the brightest supernova since 1604, as it matures into the youngest supernova remnant at age 21. HST is the essential tool for resolving SN1987A’s many physical components. A violent encounter is underway between the fastest-moving debris and the circumstellar ring: shocks excite “hotspots.” Radio, optical, infrared and X-ray fluxes have been rising rapidly: we have organized Australia Telescope, HST, VLT, Spitzer, and Chandra observations to understand the several emission mechanisms at work. Photons from the shocked ring will excite previously invisible gas outside the ring, revealing the true extent of the mass loss that preceded the explosion of Sanduleak -69 202. This will help test ideas for the progenitor of SN 1987A. The inner debris, excited by radioactive isotopes from the explosion, is now resolved and seen to be aspherical, providing direct evidence on the shape of the explosion itself. Questions about SN 1987A remain unanswered. A rich and unbroken data set from SAINTS will help answer these central questions and will build an archive for the future to help answer questions we have not yet thought to ask.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).

WFC3/UVIS 11594

A WFC3 Grism Survey for Lyman Limit Absorption at z=2

We propose to conduct a spectroscopic survey of Lyman limit absorbers at redshifts 1.8 < z < 2.5, using WFC3 and the G280 grism. This proposal intends to complete an approved Cycle 15 SNAP program (10878), which was cut short due to the ACS failure. We have selected 64 quasars at 2.3 < z < 2.6 from the Sloan Digital Sky Survey Spectroscopic Quasar Sample, for which no BAL signature is found at the QSO redshift and no strong metal absorption lines are present at z > 2.3 along the lines of sight. The survey has three main

observational goals. First, we will determine the redshift frequency dn/dz of the LLS over the column density range 16.0 < log(NHI) < 20.3 cm^-2. Second, we will measure the column density frequency distribution f(N) for the partial Lyman limit systems (PLLS) over the column density range 16.0 < log(NHI) < 17.5 cm^-2. Third, we will identify those sightlines which could provide a measurement of the primordial D/H ratio. By carrying out this survey, we can also help place meaningful constraints on two key quantities of cosmological relevance. First, we will estimate the amount of metals in the LLS using the f(N), and ground based observations of metal line transitions. Second, by determining f(N) of the PLLS, we can constrain the amplitude of the ionizing UV background at z~2 to a greater precision. This survey is ideal for a snapshot observing program, because the on-object integration times are all well below 30 minutes, and follow-up observations from the ground require minimal telescope time due to the QSO sample being bright. WFC3/UVIS 11730 Continued Proper Motions of the Magellanic Clouds: Orbits, Internal Kinematics, and Distance In Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in the Magellanic Clouds centered on background quasars. We used these data to determine the proper motions of the LMC and SMC to better than 5% and 15% respectively. The results had a number of unexpected implications for the Milky Way-LMC-SMC system and received considerable attention in the literature and in the press. The implied three-dimensional velocities are larger than previously believed and close to the escape velocity in a standard 10^12 solar mass Milky Way dark halo. Our orbit calculations suggest the Clouds may not be bound to the Milky Way or may just be on their first passage, both of which are unexpected in view of traditional interpretations of the Magellanic Stream. Alternatively, the Milky Way dark halo may be a factor two more massive than previously believed, which would be surprising in view of other observational constraints. Also, the relative velocity between the LMC and SMC was larger than expected, leaving open the possibility that the Clouds may not be bound to each other. To further verify and refine our results we requested an additional epoch data in Cycle 16 which is being executed with WFPC2/PC due to the failure of ACS. A detailed analysis of one LMC field shows that the field proper motion using all three epochs of data is consistent within 1-sigma with the two-epoch data, thus verifying that there are no major systematic effects in our previous measurements. The random errors, however, are only smaller by a factor of 1.4 because of the relatively large errors in the WFPC2 data. A prediction for a fourth epoch with measurement errors similar to epochs 1 and 2 shows that the uncertainties will improve by a factor of 3. This will allow us to better address whether the Clouds are indeed bound to each other and to the Milky Way. It will also allow us to constrain the internal motions of various populations within the Clouds, and to determine a distance to the LMC using rotational parallax. Continuation of this highly successful program is therefore likely to provide important additional insights. Execution in SNAPshot mode guarantees maximally efficient use of HST resources. WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS). WFC3/UVIS 11908 Cycle 17: UVIS Bowtie Monitor Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone. FLIGHT OPERATIONS SUMMARY: Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.) HSTARS: (None) COMPLETED OPS REQUEST: (None) COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 9 9
FGS REAcq 7 7
OBAD with Maneuver 3 3

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.