Status Report

NASA Hubble Space Telescope Daily Report #4980

By SpaceRef Editor
November 28, 2009
Filed under , ,


Continuing to Collect World Class Science

PERIOD COVERED: 5am November 25 – 5am November 27, 2009 (DOY 329/10:00z-331/10:00z)


WFC3/IR 11926

IR Zero Points

We will measure and monitor the zeropoints through the IR filters using observations of the white dwarf standard stars, GD153, GD71 and GD191B2B and the solar analog standard star, P330E. Data will be taken monthly during Cycle 17. Observations of the star cluster, NGC 104, are made twice to check color transformations. We expect an accuracy of 2% in the wide filter zeropoints relative to the HST photometric system, and 5% in the medium- and narrow-band filters.

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).

ACS/WFC3 11882

CCD Hot Pixel Annealing

All the data for this program is acquired using internal targets (lamps) only, so all of the exposures should be taken during Earth occultation time (but not during SAA passages). This program emulates the ACS pre-flight ground calibration and post launch SMOV testing (program 8948), so that results from each epoch can be directly compared. Extended Pixel Edge Response (EPER) and First Pixel Response (FPR) data will be obtained over a range of signal levels for the Wide Field Channel (WFC). The High Resolution Channel (HRC) visits have been removed since it could not be repaired during SM4.

ACS/WFC3 11879

CCD Daily Monitor (Part 1)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 352 orbits (22 weeks) from 31 August 2009 to 31 January 2010.

FGS 11874

Monitoring FGS2R2 S-Curves after SMOV4

This proposal satisfies the near-term requirement associated with SMOV4 activity OTA/FGS-10, as well as the long term Cycle 17 requirement to monitor the post SM4 evolution of the FGS2R2 S-curves stability during its first year on orbit. The S curves will be obtained from Trans mode observations of stars (point sources) at several locations in the FGS2R2 FOV in order to monitor both global and differential (i.e., field-dependent) changes. At each location, both F583W and PUPIL S-curves will be obtained. Stars in the M35 cluster will be used for this proposal since the field lies very near the ecliptic and can therefore be observed by HST at two Orients from August to May.

STIS/CCD/MA1/MA2 11866

Echelle Grating Blaze Function Zero Points

We will observe the flux standard G191B2B, obtaining echelle spectra in all primary and intermediate wavelength settings. While this was done in cycle 10 (8915), the echelle blaze shift has proved to depend sensitively on side of operation, time and the exact MSM positioning. We therefore believe it is important to obtain a complete set of post- repair data at default MSM position to allow a comprehensive solution for the echelle blaze shifts on a repaired side 2.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.


Direct Age Determination of the Local Group dE Galaxies NGC 147 and NGC 185

The origin of dwarf elliptical (dE) galaxies remains a mystery and the dE galaxies of the Local Group provide the best opportunity to study this galaxy class in detail. We propose to obtain ACS photometry of main sequence turnoff stars in the M31 dE satellites NGC 147 and NGC 185. Because these galaxies have little to no stars younger than 1 Gyr, resolving the main sequence turnoff is required to directly quantify their star formation histories. NGC 147 and NGC 185 are the only two dEs for which a clean measurement is feasible with the HST. This proposal was accepted in Cycle 15, but little data were taken before the failure of ACS. The main sequence turnoffs of NGC 147 and NGC 185 are expected to be at an apparent magnitude of V=29; we request F606W/F814W imaging one half magnitude fainter than this limit (three magnitudes fainter than the deepest previous dE observations). Quantifying the ratio of old to intermediate-age stars will allow us to discriminate between competing models of dE formation. On-going Keck/DEIMOS spectroscopy of several hundred red giant stars in each of these two dE galaxies, coupled with dynamical modeling and spectral synthesis, will complement the ACS measurement by providing information on chemical abundance patterns, dark matter content and internal dynamics. The proposed ACS data will be the first to directly quantify the onset and duration of star formation episodes in dE galaxies, and will thereby form the cornerstone in what promises to be the most comprehensive study of this class of galaxies.

COS/NUV 11720

Detailed Analysis of Carbon Atmosphere White Dwarfs

We propose to obtain UV spectra for the newly discovered white dwarf stars with a carbon-dominated atmosphere. Model calculations show that these stars emit most of their light in the UV part of the electromagnetic spectrum and that an accurate determination of the flux in this region is crucial for an accurate determination of the atmospheric parameters. It will also provide a unique opportunity to test the atomic data and broadening theory in stellar conditions never met before. This will play a primordial role in our path to understand the origin of these objects as well to obtain a better understanding of the evolution of stars in general. The principal objective we hope to achieve with these observations are 1) obtain accurate surface gravity/mass for these stars, 2) constrain/determine the abundance of other elements (O, He, Mg, Ne etc.), especially oxygen, 3) verify the accuracy of the various theoretical atomic data used in the model calculations, 4) understand the origin and evolution of carbon atmosphere white dwarfs, in particular whether progenitor stars as massive as 10.5 solar masses can produce white dwarfs, rather than supernovae. We propose to observe 5 objects chosen carefully to cover the range of observed properties among carbon atmosphere white dwarfs (effective temperature, surface gravity, abundance of hydrogen/helium and magnetic field).

WFC3/UVIS 11714

Snapshot Survey for Planetary Nebulae in Local Group Globular Clusters

PLanetary nebulae (PNe) in globular clusters (GCs) raise a number of interesting issues related to stellar and galactic evolution. The number of PNe known in Milky Way GCs, four, is surprisingly low if one assumes that all stars pass through a PN stage. However, it is likely that the remnants of stars now evolving in galactic GCs leave the AGB so slowly that any ejected nebula dissipates long before the star becomes hot enough to ionize it. Thus there should not be ANY PNe in Milky Way GCs–but there are four! It has been suggested that these Pne are the result of mergers of binary stars within GCs, i.e., that they are descendants of blue stragglers. The frequency of occurrence of PNe in external galaxies poses more questions, because it shows a range of almost an order of magnitude.

I propose a SNAPshot survey aimed at discovering PNe in the GC systems of Local Group galaxies outside the Milky Way. These clusters, some of which may be much younger than their counterparts in our galaxy, might contain many more PNe than those of our own galaxy. I will use the standard technique of emission-line and continuum imaging, which easily discloses PNe. This proposal continues a WFPC2 program started in Cycle 16, but with the more powerful WFC3. As a by-product, the survey will also produce color-magnitude diagrams for numerous clusters for the first time, reaching down to the horizontal branch.

FGS 11704

The Ages of Globular Clusters and the Population II Distance Scale

Globular clusters are the oldest objects in the universe whose age can be accurately determined. The dominant error in globular cluster age determinations is the uncertain Population II distance scale. We propose to use FGS 1R to obtain parallaxes with an accuracy of 0.2 milliarcsecond for 9 main sequence stars with [Fe/H] < -1.5. This will determine the absolute magnitude of these stars with accuracies of 0.04 to 0.06mag. This data will be used to determine the distance to 24 metal-poor globular clusters using main sequence fitting. These distances (with errors of 0.05 mag) will be used to determine the ages of globular clusters using the luminosity of the subgiant branch as an age indicator. This will yield absolute ages with an accuracy of 5%, about a factor of two improvement over current estimates. Coupled with existing parallaxes for more metal-rich stars, we will be able to accurately determine the age for globular clusters over a wide range of metallicities in order to study the early formation history of the Milky Way and provide an independent estimate of the age of the universe. The Hipparcos database contains only 1 star with [Fe/H] < -1.4 and an absolute magnitude error less than 0.18 mag which is suitable for use in main sequence fitting. Previous attempts at main sequence fitting to metal-poor globular clusters have had to rely on theoretical calibrations of the color of the main sequence. Our HST parallax program will remove this source of possible systematic error and yield distances to metal- poor globular clusters which are significantly more accurate than possible with the current parallax data. The HST parallax data will have errors which are 10 times smaller than the current parallax data. Using the HST parallaxes, we will obtain main sequence fitting distances to 11 globular clusters which contain over 500 RR Lyrae stars. This will allow us to calibrate the absolute magnitude of RR Lyrae stars, a commonly used Population II distance indicator. WFC3/IR 11696 Infrared Survey of Star Formation Across Cosmic Time We propose to use the unique power of WFC3 slitless spectroscopy to measure the evolution of cosmic star formation from the end of the reionization epoch at z>6 to the close of the galaxy-building era at z~0.3.Pure parallel observations with the grisms have proven to be efficient for identifying line emission from galaxies across a broad range of redshifts. The G102 grism on WFC3 was designed to extend this capability to search for Ly-alpha emission from the first galaxies. Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will observe about 40 deep (4-5 orbit) fields with the combination of G102 and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

Our primary science goals at the highest redshifts are: (1) Detect Lya in ~100 galaxies with z>5.6 and measure the evolution of the Lya luminosity function, independent of of cosmic variance; 2) Determine the connection between emission line selected and continuum-break selected galaxies at these high redshifts, and 3) Search for the proposed signature of neutral hydrogen absorption at re-ionization. At intermediate redshifts we will (4) Detect more than 1000 galaxies in Halpha at 0.55) galaxies.

ACS/WFC3 11599

Distances of Planetary Nebulae from SNAPshots of Resolved Companions

Reliable distances to individual planetary nebulae (PNe) in the Milky Way are needed to advance our understanding of their spatial distribution, birthrates, influence on galactic chemistry, and the luminosities and evolutionary states of their central stars (CSPN). Few PNe have good distances, however. One of the best ways to remedy this problem is to find resolved physical companions to the CSPN and measure their distances by photometric main-sequence fitting. We have previously used HST to identify and measure probable companions to 10 CSPN, based on angular separations and statistical arguments only. We now propose to use HST to re-observe 48 PNe from that program for which additional companions are possibly present. We then can use the added criterion of common proper motion to confirm our original candidate companions and identify new ones in cases that could not confidently be studied before. We will image the region around each CSPN in the V and I bands, and in some cases in the B band. Field stars that appear close to the CSPN by chance will be revealed by their relative proper motion during the 13+ years since our original survey, leaving only genuine physical companions in our improved and enlarged sample. This study will increase the number of Galactic PNe with reliable distances by 50 percent and improve the distances to Pne with previously known companions.

WFC3/UVIS 11594

A WFC3 Grism Survey for Lyman Limit Absorption at z=2

We propose to conduct a spectroscopic survey of Lyman limit absorbers at redshifts 1.8 < z < 2.5, using WFC3 and the G280 grism. This proposal intends to complete an approved Cycle 15 SNAP program (10878), which was cut short due to the ACS failure. We have selected 64 quasars at 2.3 < z < 2.6 from the Sloan Digital Sky Survey Spectroscopic Quasar Sample, for which no BAL signature is found at the QSO redshift and no strong metal absorption lines are present at z > 2.3 along the lines of sight. The survey has three main

observational goals. First, we will determine the redshift frequency dn/dz of the LLS over the column density range 16.0 < log(NHI) < 20.3 cm^-2. Second, we will measure the column density frequency distribution f(N) for the partial Lyman limit systems (PLLS) over the column density range 16.0 < log(NHI) < 17.5 cm^-2. Third, we will identify those sightlines which could provide a measurement of the primordial D/H ratio. By carrying out this survey, we can also help place meaningful constraints on two key quantities of cosmological relevance. First, we will estimate the amount of metals in the LLS using the f(N), and ground based observations of metal line transitions. Second, by determining f(N) of the PLLS, we can constrain the amplitude of the ionizing UV background at z~2 to a greater precision. This survey is ideal for a snapshot observing program, because the on-object integration times are all well below 30 minutes, and follow-up observations from the ground require minimal telescope time due to the QSO sample being bright. WFC3/UVIS 11588 Galaxy-Scale Strong Lenses from the CFHTLS Survey We aim to investigate the origin and evolution of early-type galaxies using gravitational lensing, modeling the mass profiles of objects over a wide range of redshifts. The low redshift (z = 0.2) sample is already in place following the successful HST SLACS survey; we now propose to build up and analyze a sample of comparable size (~50 systems) at high redshift (0.4 < z < 0.9) using HST WFC3 Snapshot observations of lens systems identified by the SL2S collaboration in the CFHT legacy survey. ACS/SBC/COS/NUV/FUV 11579 The Difference Between Neutral- and Ionized-Gas Metal Abundances in Local Star- Forming Galaxies with COS The metallicity of galaxies and its evolution with redshift is of paramount importance for understanding galaxy formation. Abundances in the interstellar medium (ISM) are typically determined using emission-line spectroscopy of HII regions. However, since HII regions are associated with recent SF they may not have abundances typical for the galaxy as a whole. This is true in particular for star-forming galaxies (SFGs), in which the bulk of the metals may be contained in the neutral gas. It is therefore important to directly probe the metal abundances in the neutral gas. This can be done using absorption lines in the Far UV. We have developed techniques to do this in SFGs, where the absorption is measured for sightlines toward bright SF regions within the galaxy itself. We have successfully applied this technique to a sample of galaxies observed with FUSE. The results have been very promising, suggesting in I Zw 18 that abundances in the neutral gas may be up to 0.5 dex lower than in the ionized gas. However, the interpretation of the FUSE data is complicated by the very large FUSE aperture (30 arcsec), the modest S/N, and the limited selection of species available in the FUSE bandpass. The advent of COS on HST now allows a significant advance in all of these areas. We will therefore obtain absorption line spectroscopy with G130M in the same sample for which we already have crude constraints from FUSE. We will obtain ACS/SBC images to select the few optimal sightlines to target in each galaxy. The results will be interpreted through line-profile fitting to determine the metal abundances constrained by the available lines. The results will provide important new insights into the metallicities of galaxies, and into outstanding problems at high redshift such as the observed offset between the metallicities of Lyman Break Galaxies and Damped Lyman Alpha systems. NIC2/WFC3/IR 11548 Infrared Imaging of Protostars in the Orion A Cloud: The Role of Environment in Star Formation We propose NICMOS and WFC3/IR observations of a sample of 252 protostars identified in the Orion A cloud with the Spitzer Space Telescope. These observations will image the scattered light escaping the protostellar envelopes, providing information on the shapes of outflow cavities, the inclinations of the protostars, and the overall morphologies of the envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron spectra of 75 of the protostars. Combining these new data with existing 3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured with the Spitzer Space Telescope, we will determine the physical properties of the protostars such as envelope density, luminosity, infall rate, and outflow cavity opening angle. By examining how these properties vary with stellar density (i.e. clusters vs. groups vs. isolation) and the properties of the surrounding molecular cloud; we can directly measure how the surrounding environment influences protostellar evolution, and consequently, the formation of stars and planetary systems. Ultimately, this data will guide the development of a theory of protostellar evolution. STIS/CCD/MA1 11525 COS-GTO: STIS High Resolution Observations of the Local ISM We shall use bright early-type B stars located within 150pc of the Sun to probe the absorption properties of the interstellar gas associated with the local cavity. By utilizing the high sensitivity and high spectral resolution of the HST-STIS spectrograph we shall be able to place new detection limits on absorption occurring in any highly ionized gas associated with the lines of NV, SiIV and CIV that may be present along these sight-lines within the local cavity. These data will be used to test current theoretical models that generally predict far higher absorption column densities than have been previously found. Also, the high spectral resolution will enable far stricter limits to be placed on the thermal widths of such highly ionized absorption lines, which previous observations towards the Loop I region have suggested anomalously narrow profiles consistent with their formation by either photo ionization or highly non-equilibrium processes. WFC3/UVIS/IR 11723 Imaging the Crab Nebula-Like Supernova Remnant 3C 58 The Galactic supernova remnant 3C 58 shares several important properties with the Crab Nebula. It possesses a young, rapidly spinning pulsar and an associated compact optical/IR synchrotron wind nebula. This makes 3C 58, along with the Crab and PSR B0540-69 in the LMC, only the third such PWN detected in the optical and IR. Also like the Crab, 3C58 has been associated with a historically reported `guest star’, in this case, the apparent SN of 1181 CE. Its optical nebulosity contains an unusually large fraction of shocked circumstellar material, with the remnant’s high-velocity, N-rich ejecta knots exhibiting a strong bi-polar expansion asymmetry. Despite having a relatively extensive optical nebula, it is the only young and nearby Galactic SNR that has not yet been imaged by HST. However, some recent deep, high- resolution Gemini images show a surprising amount of fine-scale filament detail, revealing some peculiar optical emission morphologies. Here we propose a WFC3 imaging survey of 3C 58 in order to investigate: 1) the optical luminosity and emission efficiency of the remnant’s young, 65.7 ms pulsar PSR J0205+6449 thereby providing a rare testing of pulsar emission models, 2) the effect of the remnant’s expanding synchrotron nebula on the formation of Rayleigh-Taylor instabilities in its optical filaments like that observed so far only in the Crab through HST imaging, and 3) the fine-scale structure of 3C 58’s slow moving circumstellar and high-velocity SN ejecta and the morphological and distribution differences between them. WFC3/ACS/UVIS/WFC/IR 11360 Star Formation in Nearby Galaxies Star formation is a fundamental astrophysical process; it controls phenomena ranging from the evolution of galaxies and nucleosynthesis to the origins of planetary systems and abodes for life. The WFC3, optimized at both UV and IR wavelengths and equipped with an extensive array of narrow-band filters, brings unique capabilities to this area of study. The WFC3 Scientific Oversight Committee (SOC) proposes an integrated program on star formation in the nearby universe which will fully exploit these new abilities. Our targets range from the well-resolved R136 in 30 Dor in the LMC (the nearest super star cluster) and M82 (the nearest starbursting galaxy) to about half a dozen other nearby galaxies that sample a wide range of star-formation rates and environments. Our program consists of broad band multiwavelength imaging over the entire range from the UV to the near-IR, aimed at studying the ages and metallicities of stellar populations, revealing young stars that are still hidden by dust at optical wavelengths, and showing the integrated properties of star clusters. Narrow-band imaging of the same environments will allow us to measure star-formation rates, gas pressure, chemical abundances, extinction, and shock morphologies. The primary scientific issues to be addressed are: (1) What triggers star formation? (2) How do the properties of star-forming regions vary among different types of galaxies and environments of different gas densities and compositions? (3) How do these different environments affect the history of star formation? (4) Is the stellar initial mass function universal or determined by local conditions? WFC3/UVIS 11565 A Search for Astrometric Companions to Very Low-Mass, Population II Stars We propose to carry out a Snapshot search for astrometric companions in a subsample of very low-mass, halo subdwarfs identified within 120 parsecs of the Sun. These ultra-cool M subdwarfs are local representatives of the lowest-mass H burning objects from the Galactic Population II. The expected 3-4 astrometric doubles that will be discovered will be invaluable in that they will be the first systems from which gravitational masses of metal-poor stars at the bottom of the main sequence can be directly measured. FLIGHT OPERATIONS SUMMARY: Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.) HSTARS: #12103 REAcq(1,2,1) @11:30:07z, REAcq(1,2,1) @329/13:06:04z and REAcq(1,2,1) @329/14:42:00z failed because FGS Sequential Attitude errors were too large to correct Observations affected: STIS #30-40, Proposal #11866 #12106 REAcq(1,2,1) @330/00:39:06z required 2 attempts to achieve FL-DV @330/00:41z Observations possibly affected: STIS #41-44 Proposal #11846, WFC3 #91-94 Proposal #11548 #12108 GSAcq(1,2,1) @331/02:40z & REAcq(1,2,1) @331/03:56:24z during LOS resulted in FL backup on FGS1 Observations possibly affected: STIS #60 Proposal #11846, ACS #60-61 Proposal #11879, WFC3 #114-117 Proposal #11723. HSTARS for DOYs 321 & 324 from previous Daily Reports: #12104 DOY 321 OTA SE review of PTAS data revealed that GSAcq(2,3,3) @321/04:25:25 failed with search radius limit exceeded on FGS2 Observations affected: WFC3 #47 Proposal #11360 #12105 DOY 324 OTA SE review of PTAS processing shows that GSAcq(2,1,2) @324/09:08:48z required 3 attempts to achieve CT-DV in FGS2 Observations possibly affected: WFC3 #156 Proposal #11565 COMPLETED OPS REQUEST: #18767-0 Realtime OBAD with and without correction @ 329/13:30z COMPLETED OPS NOTES: (None)

FGS GSAcq 20 20
FGS REAcq 14 11
OBAD with Maneuver 15 15


SpaceRef staff editor.