Status Report

NASA Hubble Space Telescope Daily Report #4963

By SpaceRef Editor
November 5, 2009
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #4963

Continuing to Collect World Class Science

PERIOD COVERED: 5am October 30 – 5am November 2, 2009 (DOY 303/09:00z-306/10:00z)

OBSERVATIONS SCHEDULED

COS/FUV 11997

FUV Internal/External Wavelength Scale Monitor

This program monitors the offsets between the wavelength scale set by the internal wavecal versus that defined by absorption lines in external targets. This is accomplished by observing two external targets in the SMC: SK191 with G130M and G160M and Cl* NGC 330 ROB B37 with G140L (SK191 is too bright to be observed with G140L). The cenwaves observed in this program are a subset of the ones used during Cycle 17. Observing all cenwaves would require a considerably larger number of orbits. Constraints on scheduling of each target are placed so that each target is observed once every ~2-3 months. Observing the two targets every month would also require a considerably larger number of orbits.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by GOs in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).

WFC3/IR 11926

IR Zero Points

We will measure and monitor the zeropoints through the IR filters using observations of the white dwarf standard stars, GD153, GD71 and GD191B2B and the solar analog standard star, P330E. Data will be taken monthly during Cycle 17. Observations of the star cluster, NGC 104, are made twice to check color transformations. We expect an accuracy of 2% in the wide filter zeropoints relative to the HST photometric system, and 5% in the medium- and narrow-band filters.

WFC3/UV 11923

UVIS Filter Wedge Check

The position of each UVIS filter will be checked to verify that the filters meet the CEI (Contract End Item) specification for image displacement. We will observe NGC 1850 with all full-frame UVIS filters using a subarray (UVIS1-C512A) without moving the telescope, as well as the quad filters with a 512×512 specifically designed subarray. We will also acquire one grism exposure. The relative displacement of the stars in each image will be measured from one filter to the next.

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.

WFC3/UVIS 11907

UVIS Cycle 17 Contamination Monitor

The UV throughput of WFC3 during Cycle 17 is monitored via weekly standard star observations in a subset of key filters covering 200-600nm and F606W, F814W as controls on the red end. The data will provide a measure of throughput levels as a function of time and wavelength, allowing for detection of the presence of possible contaminants.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).

ACS/WFC3 11887

CCD Stability Monitor

This program will verify that the low frequency flat fielding, the photometry, and the geometric distortion are stable in time and across the field of view of the CCD arrays. A moderately crowded stellar field in the cluster 47 Tuc is observed with the ACS (at the cluster core) and WFC3 (6 arcmin West of the cluster core) using the full suite of broad and narrow band imaging filters. The positions and magnitudes of objects will be used to monitor local and large scale variations in the plate scale and the sensitivity of the detectors and to derive an independent measure of the detector CTE. The UV sensitivity for the SBC and ACS will be addressed in the UV contamination monitor program (11886, PI=Smith).

One additional orbit will be obtained at the beginning of the cycle will allow a verification of the CCD gain ratios for WFC3 using gain 2.0, 1.4, 1.0, 0.5 and for ACS using gain 4.0 and 2.0. In addition, one subarray exposure with the WFC3 will allow a verification that photometry obtained in full-frame and in sub-array modes are repeatable to better than 1%. This test is important for the ACS Photometric Cross-Calibration program (11889, PI=Bohlin) which uses sub-array exposures.

ACS/WFC3 11879

CCD Daily Monitor (Part 1)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 352 orbits (22 weeks) from 31 August 2009 to 31 January 2010.

STIS/MA 11863

STIS MAMA Fold Distribution

The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis (10035) during Cycle 12.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

FGS 11788

The Architecture of Exoplanetary Systems

Are all planetary systems coplanar? Concordance cosmogony makes that prediction. It is, however, a prediction of extrasolar planetary system architecture as yet untested by direct observation for main sequence stars other than the Sun. To provide such a test, we propose to carry out FGS astrometric studies on four stars hosting seven companions. Our understanding of the planet formation process will grow as we match not only system architecture, but formed planet mass and true distance from the primary with host star characteristics for a wide variety of host stars and exoplanet masses.

We propose that a series of FGS astrometric observations with demonstrated 1 millisecond of arc per-observation precision can establish the degree of coplanarity and component true masses for four extrasolar systems: HD 202206 (brown dwarf+planet); HD 128311 (planet+planet), HD 160691 = mu Arae (planet+planet), and HD 222404AB = gamma Cephei (planet+star). In each case the companion is identified as such by assuming that the minimum mass is the actual mass. For the last target, a known stellar binary system, the companion orbit is stable only if coplanar with the AB binary orbit.

WFC3/UVIS 11732

The Temperature Profiles of Quasar Accretion Disks

We can now routinely measure the size of quasar accretion disks using gravitational microlensing of lensed quasars. At optical wavelengths we observe a size and scaling with black hole mass roughly consistent with thin disk theory but the sizes are larger than expected from the observed optical fluxes. One solution would be to use a flatter temperature profile, which we can study by measuring the wavelength dependence of the disk size over the largest possible wavelength baseline. Thus, to understand the size discrepancy and to probe closer to the inner edge of the disk we need to extend our measurements to UV wavelengths, and this can only be done with HST. For example, in the UV we should see significant changes in the optical/UV size ratio with black hole mass. We propose monitoring 5 lenses spanning a broad range of black hole masses with well-sampled ground based light curves, optical disk size measurements and known GALEX UV fluxes during Cycles 17 and 18 to expand from our current sample of two lenses. We would obtain 5 observations of each target in each Cycle, similar to our successful strategy for the first two targets.

STIS/CCD 11721

Verifying the Utility of Type Ia Supernovae as Cosmological Probes: Evolution and Dispersion in the Ultraviolet Spectra

The study of distant type Ia supernova (SNe Ia) offers the most practical and immediate discriminator between popular models of dark energy. Yet fundamental questions remain over possible redshift-dependent trends in their observed and intrinsic properties. High-quality Keck spectroscopy of a representative sample of 36 intermediate redshift SNe Ia has revealed a surprising, and unexplained, diversity in their rest-frame UV fluxes. One possible explanation is hitherto undiscovered variations in the progenitor metallicity. Unfortunately, this result cannot be compared to local UV data as only two representative SNe Ia have been studied near maximum light. Taking advantage of two new `rolling searches’ and the restoration of STIS, we propose a non-disruptive TOO campaign to create an equivalent comparison local sample. This will allow us to address possible evolution in the mean UV spectrum and its diversity, an essential precursor to the study of SNe beyond z~1.

ACS/WFC 11689

Direct Observations of Dark Matter from a Second Bullet: The Spectacular Abell 2744

Vigorous cluster mergers provide a unique opportunity to directly “see” dark matter and to probe its properties through the analysis of the segregation of the baryonic and non-baryonic components. This is accomplished through detailed comparison of the mass distributions as traced by X-ray emitting gas and by gravitational lensing. This condition is rare and so far only one cluster has met these requirements, the so-called “bullet” cluster, producing exciting results and placing constraints to the properties of dark matter. These constraints have a broad impact on models for formation of structure and on galaxy evolution. This multi-wavelength analysis has the potential confront alternative gravity models such as MOND. Therefore, it is crucial to find new bullet clusters to corroborate and improve previous measurements. This is the most direct way to constrain dark matter properties and A2744 is ideal for corroborating this study since it maximizes all the requirements for this analysis. Here, we propose to carry out such analysis through combined ACS and Chandra observations of the cluster merger Abell 2744.

WFC3/UV/ACS/WFC 11688

Exploring the Bottom End of the White Dwarf Cooling Sequence in the Open Cluster NGC6819

The recent discovery by our group of an unexpectedly bright end of the white-dwarf (WD) luminosity function (LF) of the metal-rich, old open cluster NGC 6791 casts serious doubts on our understanding of the physical process which rules the formation and the cooling of WDs. It is clear at this point that the theory badly needs more observations. Here we propose WFC3/UVIS and ACS/WFC HST observations reaching the bottom end of the WD LF, for the first time in a solar-metallicity, 2.5-Gyr-old, populous open cluster: NGC 6819.

ACS/WFC3 11670

The Host Environments of Type Ia Supernovae in the SDSS Survey

The Sloan Digital Sky Survey Supernova Survey has discovered nearly 500 type Ia supernovae and created a large, unique, and uniform sample of these cosmological tools. As part of a comprehensive study of the supernova hosts, we propose to obtain Hubble ACS images of a large fraction of these galaxies. Integrated colors and spectra will be measured from the ground, but we require high-resolution HST imaging to provide accurate morphologies and color information at the site of the explosion. This information is essential in determining the systematic effects of population age on type Ia supernova luminosities and improving their reliability in measuring dark energy. Recent studies suggest two populations of type Ia supernovae: a class that explodes promptly after star-formation and one that is delayed by billions of years. Measuring the star-formation rate at the site of the supernova from colors in the HST images may be the best way to differentiate between these classes.

WFC3/IR 11666

Chilly Pairs: A Search for the Latest-type Brown Dwarf Binaries and the Prototype Y Dwarf

We propose to use HST/NICMOS to image a sample of 27 of the nearest (< 20 pc) and lowest luminosity T-type brown dwarfs in order to identify and characterize new very low mass binary systems. Only 3 late-type T dwarf binaries have been found to date, despite that fact that these systems are critical benchmarks for evolutionary and atmospheric models at the lowest masses. They are also the most likely systems to harbor Y dwarf companions, an as yet unpopulated putative class of very cold (T < 600 K) brown dwarfs. Our proposed program will more than double the number of T5-T9 dwarfs imaged at high resolution, with an anticipated yield of ~5 new binaries with initial characterization of component spectral types. We will be able to probe separations sufficient to identify systems suitable for astrometric orbit and dynamical mass measurements. We also expect one of our discoveries to contain the first Y-type brown dwarf. Our proposed program complements and augments ongoing ground-based adaptive optics surveys and provides pathway science for JWST. WFC3/UVIS/IR 11644 A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone. In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system. To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations. With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point. Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system. While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets. The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date. We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups. These objects will likely define the core Kuiper Belt compositional sample for years to come. While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery — both anticipated and not — is extraordinary. COS/FUV 11625 Beyond the Classical Paradigm of Stellar Winds: Investigating Clumping, Rotation and the Weak Wind Problem in SMC O Stars SMC O stars provide an unrivaled opportunity to probe star formation, evolution, and the feedback of massive stars in an environment similar to the epoch of the peak in star formation history. Two recent breakthroughs in the study of hot, massive stars have important consequences for understanding the chemical enrichment and buildup of stellar mass in the Universe. The first is the realization that rotation plays a major role in influencing the evolution of massive stars and their feedback on the surrounding environment. The second is a drastic downward revision of the mass loss rates of massive stars coming from an improved description of their winds. STIS spectroscopy of SMC O stars combined with state-of-the-art NLTE analyses has shed new light on these two topics. A majority of SMC O stars reveal CNO-cycle processed material brought at their surface by rotational mixing. Secondly, the FUV wind lines of early O stars provide strong indications of the clumped nature of their wind. Moreover, we first drew attention to some late-O dwarfs showing extremely weak wind signatures. Consequently, we have derived mass loss rates from STIS spectroscopy that are significantly lower than the current theoretical predictions used in evolutionary models. Because of the limited size of the current sample (and some clear bias toward stars with sharp-lined spectra), these results must however be viewed as tentative. Thanks to the high efficiency of COS in the FUV range, we propose now to obtain high-resolution FUV spectra with COS of a larger sample of SMC O stars to study systematically rotation and wind properties of massive stars at low metallicity. The analysis of the FUV wind lines will be based on our 2D extension of CMFGEN to model axi-symmetric rotating winds. WFC3/UVIS 11594 A WFC3 Grism Survey for Lyman Limit Absorption at z=2 We propose to conduct a spectroscopic survey of Lyman limit absorbers at redshifts 1.8 < z < 2.5, using WFC3 and the G280 grism. This proposal intends to complete an approved Cycle 15 SNAP program (10878), which was cut short due to the ACS failure. We have selected 64 quasars at 2.3 < z < 2.6 from the Sloan Digital Sky Survey Spectroscopic Quasar Sample, for which no BAL signature is found at the QSO redshift and no strong metal absorption lines are present at z > 2.3 along the lines of sight. The survey has three main

observational goals. First, we will determine the redshift frequency dn/dz of the LLS over the column density range 16.0 < log(NHI) < 20.3 cm^-2. Second, we will measure the column density frequency distribution f(N) for the partial Lyman limit systems (PLLS) over the column density range 16.0 < log(NHI) < 17.5 cm^-2. Third, we will identify those sightlines which could provide a measurement of the primordial D/H ratio. By carrying out this survey, we can also help place meaningful constraints on two key quantities of cosmological relevance. First, we will estimate the amount of metals in the LLS using the f(N), and ground based observations of metal line transitions. Second, by determining f(N) of the PLLS, we can constrain the amplitude of the ionizing UV background at z~2 to a greater precision. This survey is ideal for a snapshot observing program, because the on-object integration times are all well below 30 minutes, and follow-up observations from the ground require minimal telescope time due to the QSO sample being bright. WFC3/UV 11589 Hypervelocity Stars as Unique Probes of the Galactic Center and Outer Halo We propose to obtain high-resolution images of 11 new hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame, as a part of a long-term program to measure precise proper motions in an absolute inertial frame. The origin of these recently discovered stars with extremely large positive radial velocities, in excess of the escape speed from the Galaxy, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the triaxial dark matter halo. The hypervelocity stars allow determination of the Galactic potential out to 120 kpc, independently of and at larger distances than is afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. Proper motions of the full set of hypervelocity stars will provide unique constraints on massive star formation in the environment of the Galactic center and on the history of stellar ejection by the supermassive black hole. We request one orbit with WFC3 for each of the 11 hypervelocity stars to establish their current positions relative to background galaxies. We request a repeated observation of these stars in Cycle 19, which will conclusively measure the astrometric proper motions. STIS/CCD 11572 Charaterizing Atmospheric Sodium in the Transiting hot-Jupiter HD189733b We propose STIS transit observations of the exoplanet HD189733b with the goal of measuring atmospheric atomic sodium. Our strategy is to repeat the observing meathods used for HD209458b, which resulted in a successful exoplanetary atmospheric sodium detection. Initial ground-based measurements suggest that the sodium signature on HD189733 could be up to three times larger than HD209458b, making a robust 8? detection possible within a 12 orbit program observing three transits. Transit transmission spectra resulting from space-based measurements have the advantage of retaining absolute transit depths when features are measured, which will make it possible to provide an observational link between sodium and atmospheric haze detected with ACS. Such a link can break modeling degeneracies and providing stringent constraints on the overall atmospheric properties, making such atmospheric information as abundances and the temperature-pressure-altitude relation known. A successful measurement will also allow for comparative atmospheric exoplanetology, as an atmospheric feature will be measured with the same instrument in two separate planets. STIS/CCD 11567 Boron Abundances in Rapidly Rotating Early-B Stars Models of rotation in early-B stars predict that rotationally driven mixing should deplete surface boron abundances during the main-sequence lifetime of many stars. However, recent work has shown that many boron depleted stars are intrinsically slow rotators for which models predict no depletion should have occurred, while observations of nitrogen in some more rapidly rotating stars show less mixing than the models predict. Boron can provide unique information on the earliest stages of mixing in B stars, but previous surveys have been biased towards narrow- lined stars because of the difficulty in measuring boron abundances in rapidly rotating stars. The two targets observed as part of our Cycle 13 SNAP program 10175, just before STIS failed, demonstrate that it is possible to make useful boron abundance measurements for early-B stars with Vsin(i) above 100 km/s. We propose to extend that survey to a large enough sample of stars to allow statistically significant tests of models of rotational mixing in early-B stars. WFC3/UVIS 11565 A Search for Astrometric Companions to Very Low-Mass, Population II Stars We propose to carry out a Snapshot search for astrometric companions in a subsample of very low-mass, halo subdwarfs identified within 120 parsecs of the Sun. These ultra-cool M subdwarfs are local representatives of the lowest-mass H burning objects from the Galactic Population II. The expected 3-4 astrometric doubles that will be discovered will be invaluable in that they will be the first systems from which gravitational masses of metal-poor stars at the bottom of the main sequence can be directly measured. NIC2/WFC3/IR 11548 Infrared Imaging of Protostars in the Orion A Cloud: The Role of Environment in Star Formation We propose NICMOS and WFC3/IR observations of a sample of 252 protostars identified in the Orion A cloud with the Spitzer Space Telescope. These observations will image the scattered light escaping the protostellar envelopes, providing information on the shapes of outflow cavities, the inclinations of the protostars, and the overall morphologies of the envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron spectra of 75 of the protostars. Combining these new data with existing 3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured with the Spitzer Space Telescope, we will determine the physical properties of the protostars such as envelope density, luminosity, infall rate, and outflow cavity opening angle. By examining how these properties vary with stellar density (i.e. clusters vs. groups vs. isolation) and the properties of the surrounding molecular cloud; we can directly measure how the surrounding environment influences protostellar evolution, and consequently, the formation of stars and planetary systems. Ultimately, this data will guide the development of a theory of protostellar evolution. COS/FUV 11524 COS-GTO: WARM AND HOT ISM IN AND NEAR THE MILKY WAY COS G130M and G160M 20, 000 resolution observations will be obtained for 10 AGNs situated beyond Milky Way high velocity clouds. For all objects good O VI line profile observations exist from FUSE and high velocity O VI is detected. The COS observations will be used to obtain high quality absorption line profiles (S/N ~ 30 to 40) for C IV, Si IV and N V in the low and high velocity gas toward each AGN. The high ionization profiles of O VI (from FUSE), N V, C IV, and Si IV will be compared to low ionization profiles (O I, S II, Si II, Fe II, etc.) in order to evaluate the physical conditions and origins of the highly ionized gas in and near the Milky Way at low and high velocity. The HVCs include Complex C (four lines of sight), Complex A, WD, WB, and several negative velocity O VI HVCs. Other studies to be undertaken with this data set include studies of the physical conditions and abundances in the cool and warm HVC gas and studies of the physical conditions in low redshift IGM systems detected along the 10 lines of sight. WFC3/ACS/UVIS 11360 Star Formation in Nearby Galaxies Star formation is a fundamental astrophysical process; it controls phenomena ranging from the evolution of galaxies and nucleosynthesis to the origins of planetary systems and abodes for life. The WFC3, optimized at both UV and IR wavelengths and equipped with an extensive array of narrow-band filters, brings unique capabilities to this area of study. The WFC3 Scientific Oversight Committee (SOC) proposes an integrated program on star formation in the nearby universe which will fully exploit these new abilities. Our targets range from the well-resolved R136 in 30 Dor in the LMC (the nearest super star cluster) and M82 (the nearest starbursting galaxy) to about half a dozen other nearby galaxies that sample a wide range of star-formation rates and environments. Our program consists of broad band multiwavelength imaging over the entire range from the UV to the near-IR, aimed at studying the ages and metallicities of stellar populations, revealing young stars that are still hidden by dust at optical wavelengths, and showing the integrated properties of star clusters. Narrow-band imaging of the same environments will allow us to measure star-formation rates, gas pressure, chemical abundances, extinction, and shock morphologies. The primary scientific issues to be addressed are: (1) What triggers star formation? (2) How do the properties of star-forming regions vary among different types of galaxies and environments of different gas densities and compositions? (3) How do these different environments affect the history of star formation? (4) Is the stellar initial mass function universal or determined by local conditions? WFC3/IR 11208 The Co-Evolution of Spheroids and Black Holes in the Last Six Billion Years The masses of giant black holes are correlated with the luminosities, masses, and velocity dispersions of the bulges of their host galaxies. This empirical correlation of phenomena on widely different scales (from pcs to kpcs) suggests that the formation and evolution of galaxies and central black holes are closely linked. In Cycle 13, we have started a campaign to map directly the co-evolution of spheroids and black-holes by measuring in observationally favorable redshift windows the empirical correlations connecting their properties. By focusing on Seyfert 1s, where the nucleus and the stars contribute comparable fractions of total light, black hole mass and bulge dispersion are obtained from Keck spectroscopy. HST is required for accurate measurement of the non-stellar AGN continuum, the morphology of the galaxy, and the structural parameters of the bulge. The results at z=0.36 indicate a surprisingly fast evolution of bulges in the past 4 Gyrs (significant at the 95%CL), in the sense that bulges were significantly smaller for a given black hole mass. Also, the large fraction of mergers and disturbed galaxies (4+2 out of 20) identifies gas-rich mergers as the mechanisms responsible for bulge-growth. Going to higher redshift – where evolutionary trends should be stronger – is needed to confirm these tantalizing results. We propose therefore to push our investigation to the next suitable redshift window z=0.57 (lookback-time 6 Gyrs). Fifteen objects are the minimum number required to map the evolution of the empirical correlations between bulge properties and black-hole mass, and to achieve a conclusive detection of evolution (>99%CL).

NIC1 11205

The Effects of Multiplicity on the Evolution of Young Stellar Objects: A NICMOS Imaging Study

We propose to use NICMOS to investigate the multiplicity of young stellar objects (YSOs) in the Orion B molecular cloud. Previous observations with the Spitzer Space Telescope have revealed a remarkable star forming filament near the NGC 2068 reflection nebula. The population of YSOs associated with the filament exhibit a surprisingly wide range of circumstellar evolutionary states, from deeply embedded protostars to T Tauri accretion disks. Many of the circumstellar disks themselves show evidence for significant dust evolution, including grain growth and settling and cleared inner holes, apparently in spite of the very young age of these stars. We will estimate the binary fraction of a representative sample of objects in these various stages of evolution in order to test whether companions may play a significant role in that evolution.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

12061 – GSAcq(1,2,1) scheduled at 304/23:27:17 resulted in fine lock backup (1,0,1).

Observations possibly affected: WFC3 138 – 142 Proposal ID#11548, STIS 67 Proposal ID#11844, STIS 68-70 Proposal ID#11846, ACS 119 and 120 Proposal ID#11879

12062 – GSAcq(1,2,1) scheduled at 305/19:04:37z failed due to search radius limits exceeded on both FGS1 and FGS2.

Observations affected: ACS 127-138, proposal ID#11887.

For Day 295 and 296 12059 – GSAcq(2,1,2) required two attempts to achieve CT-DV @ 295/13:41:55 12060 – GSAcq(1,2,1) Lost Lock @ 296/17:18:55

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 32 31
FGS REAcq 22 22
OBAD with Maneuver 15 15
LOSS of LOCK

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.