Status Report

NASA Hubble Space Telescope Daily Report #4941

By SpaceRef Editor
October 9, 2009
Filed under , ,


Continuing to Collect World Class Science

PERIOD COVERED: 5am September 29 – 5am September 30, 2009 (DOY 272/09:00Z-273/09:00Z)


ACS/WFC3 11599

Distances of Planetary Nebulae from SNAPshots of Resolved Companions

Reliable distances to individual planetary nebulae (PNe) in the Milky Way are needed to advance our understanding of their spatial distribution, birthrates, influence on galactic chemistry, and the luminosities and evolutionary states of their central stars (CSPN). Few PNe have good distances, however. One of the best ways to remedy this problem is to find resolved physical companions to the CSPN and measure their distances by photometric main-sequence fitting. We have previously used HST to identify and measure probable companions to 10 CSPN, based on angular separations and statistical arguments only. We now propose to use HST to re-observe 48 PNe from that program for which additional companions are possibly present. We then can use the added criterion of common proper motion to confirm our original candidate companions and identify new ones in cases that could not confidently be studied before. We will image the region around each CSPN in the V and I bands, and in some cases in the B band. Field stars that appear close to the CSPN by chance will be revealed by their relative proper motion during the 13+ years since our original survey, leaving only genuine physical companions in our improved and enlarged sample. This study will increase the number of Galactic PNe with reliable distances by 50 percent and improve the distances to PNe with previously known companions.

COS/FUV 11897

FUV Spectroscopic Sensitivity Monitoring

The purpose of this proposal is to monitor sensitivity in each FUV grating mode to detect any changes due to contamination or other causes.

COS/NUV 11896

NUV Spectroscopic Sensitivity Monitoring

The purpose of this proposal is to monitor sensitivity of each NUV grating mode to detect any changes due to contamination or other causes.

NIC1/NIC2/NIC3 11947

Extended Dark Monitoring

This program takes a series of darks to obtain darks (including amplifier glow, dark current, and shading profiles) for all three cameras in the read-out sequences used in Cycle 17. A set of 12 orbits will be observed every two months for a total of 72 orbits for a 12 month Cycle 17. This is a continuation of Cycle 16 program 11330 scaled down by ~80%.

The first orbit (Visit A0) should be scheduled in the NICMOS SMOV after the DC Transfer Test (11406) and at least 36h before the Filter Wheel Test (11407). Data download using fast track.

The following 28 orbits (visit A1-N2) should be scheduled AFTER the SMOV Proposal 11407 (Filter Wheel Test). This is done in order to monitor the dark current following an adjustment of the NCS set-point. These visits should be executed until the final temperature is reached during SMOV.

NIC1/NIC2/NIC3 8795

NICMOS Post-SAA Calibration – CR Persistence Part 6

This is a new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS cameras. The post-SAA darks will be non-standard reference files available to users with a ‘Use After’ date/time mark. The keyword ‘UseAfter=date/time’ will also be added to the header of each post-SAA dark frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day, so each post-SAA dark will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as post-SAA darks. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such MAPs to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

STIS/CCD 11855

STIS/CCD Spectroscopic Sensitivity Monitor for Cycle 17

The purpose of this proposal is to monitor the sensitivity of each CCD grating mode to detect any changes due to contamination or other causes.

STIS/CCD/MA1/MA2 11860

MAMA Spectroscopic Sensitivity and Focus Monitor

The purpose of this proposal is to monitor the sensitivity of each MAMA grating mode to detect any change due to contamination or other causes, and to also monitor the STIS focus in a spectroscopic and an imaging mode.

WFC3/ACS/IR 11359

Panchromatic WFC3 Survey of Galaxies at Intermediate z: Early Release Science Program for Wide Field Camera 3

The unique panchromatic capabilities of WFC3 will be used to survey the structure and evolution of galaxies at the peak of the galaxy assembly epoch. Deep ultraviolet and near-IR imaging and slitless spectroscopy of existing deep multi-color ACS fields will be used to gauge star-formation and the growth of stellar mass as a function of morphology, structure and surrounding density in the critical epoch 1 < z < 4. Images in the F225W, F275W, and F336W filters will identify galaxies at z < 1.5 from their UV continuum breaks, and provide star-formation indicators tied directly to both local and z > 3 populations. Deep near-IR (F125W and F160W) images will probe the stellar mass function well below 10^9 Msun for mass-complete samples. Lastly, the WFC3 slitless UV and near-IR grisms will be used to measure redshifts and star-formation rates from H- alpha and rest-frame UV continuum slope. This WFC3 ERS program will survey one 4 x 2 mosaic for a total area of 50 square arcminutes to 5-sigma depths of m_AB = 27 in most filters from the mid-UV through the near-IR.

This multicolor high spatial resolution data set will allow the user to gauge the growth of galaxies through star-formation and merging. High precision photometric and low- resolution spectroscopic redshifts will allow accurate determinations of the faint-end of the luminosity and mass functions, and will shed light on merging and tidal disruption of stellar and gaseous disks. The WFC3 images will also allow detailed studies of the internal structure of galaxies, and the distribution of young and old stellar populations. This program will demonstrate the unique power of WFC3 by applying its many diverse modes and full panchromatic capability to a forefront problem in astrophysics.

WFC3/IR 11719

A Calibration Database for Stellar Models of Asymptotic Giant Branch Stars

Studies of galaxy formation and evolution rely increasingly on the interpretation and modeling of near-infrared observations. At these wavelengths, the brightest stars are intermediate mass asymptotic giant branch (AGB) stars. These stars can contribute nearly 50% of the integrated luminosity at near infrared and even optical wavelengths, particularly for the younger stellar populations characteristic of high-redshift galaxies (z>1). AGB stars are also significant sources of dust and heavy elements. Accurate modeling of AGB stars is therefore of the utmost importance.

The primary limitation facing current models is the lack of useful calibration data. Current models are tuned to match the properties of the AGB population in the Magellanic Clouds, and thus have only been calibrated in a very narrow range of sub- solar metallicities. Preliminary observations already suggest that the models are overestimating AGB lifetimes by factors of 2-3 at lower metallicities. At higher (solar) metallicities, there are no appropriate observations for calibrating the models.

We propose a WFC3/IR SNAP survey of nearby galaxies to create a large database of AGB populations spanning the full range of metallicities and star formation histories. Because of their intrinsically red colors and dusty circumstellar envelopes, tracking the numbers and bolometric fluxes of AGB stars requires the NIR observations we propose here. The resulting observations of nearby galaxies with deep ACS imaging offer the opportunity to obtain large (100-1000’s) complete samples of AGB stars at a single distance, in systems with well-constrained star formation histories and metallicities.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by GOs in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).

WFC3/UVIS 11565

A Search for Astrometric Companions to Very Low-Mass, Population II Stars

We propose to carry out a Snapshot search for astrometric companions in a subsample of very low-mass, halo subdwarfs identified within 120 parsecs of the Sun. These ultra-cool M subdwarfs are local representatives of the lowest-mass H burning objects from the Galactic Population II. The expected 3-4 astrometric doubles that will be discovered will be invaluable in that they will be the first systems from which gravitational masses of metal-poor stars at the bottom of the main sequence can be directly measured.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone. In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system. To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations. With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point. Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system. While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets. The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date. We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups. These objects will likely define the core Kuiper Belt compositional sample for years to come. While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery — both anticipated and not — is extraordinary.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)



FGS GSAcq 10 10
FGS REAcq 7 7
OBAD with Maneuver 8 8


SpaceRef staff editor.