Status Report

NASA Hubble Space Telescope Daily Report #4920

By SpaceRef Editor
August 31, 2009
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #4920

Continuing to collect World Class Science

PERIOD COVERED: 5am August 28 – 5am August 31, 2009 (DOY 240/09:00z-243/09:00z)

OBSERVATIONS SCHEDULED

WFC3/IR 11915

IR Internal Flat Fields

This program is the same as 11433 (SMOV) and depends on the completion of the IR initial alignment (program 11425). This version contains three instances of 37 internal orbits; to be scheduled early, middle, and near the end of Cycle 17, in order to use the entire 110-orbit allocation.

In this test, we will study the stability and structure of the IR channel flat field images through all filter elements in the WFC3-IR channel. Flats will be monitored, i.e. to capture any temporal trends in the flat fields, and delta flats produced. High signal observations will provide a map of the pixel-to-pixel flat field structure, as well as identify the positions of any dust particles.

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.

WFC3/UVIS 11907

UVIS Cycle 17 Contamination Monitor

The UV throughput of WFC3 during Cycle 17 is monitored via weekly standard star observations in a subset of key filters covering 200-600nm and F606W, F814W as controls on the red end. The data will provide a measure of throughput levels as a function of time and wavelength, allowing for detection of the presence of possible contaminants.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).

STIS/CCD 11846

CCD Bias Monitor-Part 1

Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

STIS/CCD 11844

CCD Dark Monitor Part 1

Monitor the darks for the STIS CCD.

FGS 11787

Dynamical Masses and Radii of Four White Dwarf Stars

This proposal uses the FGS1R in Trans mode to resolve a pair of double degenerate binary systems (WD1639+153 and WD 1818+26) in order to determine their orbital elements. In addition, the binaries and several nearby field stars are observed by FGS1R in Pos mode to establish the local inertial reference frame of each binary, as well as its parallax and proper motion. This will allow for a direct measurement of the distance, which yields the intrinsic luminosity, and when combined with the spectroscopic estimates of the T_eff, the radius of each of the four WD stars. When combined with the orbital elements, this leads to a dynamical mass measurement for each WD, and a four calibration points of the WD mass-radius relation.

ACS/WFC3 11782

Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long- term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

WFC3/UVIS 11732

The Temperature Profiles of Quasar Accretion Disks

We can now routinely measure the size of quasar accretion disks using gravitational microlensing of lensed quasars. At optical wavelengths we observe a size and scaling with black hole mass roughly consistent with thin disk theory but the sizes are larger than expected from the observed optical fluxes. One solution would be to use a flatter temperature profile, which we can study by measuring the wavelength dependence of the disk size over the largest possible wavelength baseline. Thus, to understand the size discrepancy and to probe closer to the inner edge of the disk we need to extend our measurements to UV wavelengths, and this can only be done with HST. For example, in the UV we should see significant changes in the optical/UV size ratio with black hole mass. We propose monitoring 5 lenses spanning a broad range of black hole masses with well-sampled ground based light curves, optical disk size measurements and known GALEX UV fluxes during Cycles 17 and 18 to expand from our current sample of two lenses. We would obtain 5 observations of each target in each Cycle, similar to our successful strategy for the first two targets.

FGS 11704

The Ages of Globular Clusters and the Population II Distance Scale

Globular clusters are the oldest objects in the universe whose age can be accurately determined. The dominant error in globular cluster age determinations is the uncertain Population II distance scale. We propose to use FGS 1R to obtain parallaxes with an accuracy of 0.2 milliarcsecond for 9 main sequence stars with [Fe/H] < -1.5. This will determine the absolute magnitude of these stars with accuracies of 0.04 to 0.06mag. This data will be used to determine the distance to 24 metal-poor globular clusters using main sequence fitting. These distances (with errors of 0.05 mag) will be used to determine the ages of globular clusters using the luminosity of the subgiant branch as an age indicator. This will yield absolute ages with an accuracy 5%, about a factor of two improvement over current estimates. Coupled with existing parallaxes for more metal-rich stars, we will be able to accurately determine the age for globular clusters over a wide range of metallicities in order to study the early formation history of the Milky Way and provide an independent estimate of the age of the universe. The Hipparcos database contains only 1 star with [Fe/H] < -1.4 and an absolute magnitude error less than 0.18 mag which is suitable for use in main sequence fitting. Previous attempts at main sequence fitting to metal-poor globular clusters have had to rely on theoretical calibrations of the color of the main sequence. Our HST parallax program will remove this source of possible systematic error and yield distances to metal- poor globular clusters which are significantly more accurate than possible with the current parallax data. The HST parallax data will have errors which are 10 times smaller than the current parallax data. Using the HST parallaxes, we will obtain main sequence fitting distances to 11 globular clusters which contain over 500 RR Lyrae stars. This will allow us to calibrate the absolute magnitude of RR Lyrae stars, a commonly used Population II distance indicator. WFC3/UVIS 11657 The Population of Compact Planetary Nebulae in the Galactic Disk We propose to secure narrow- and broad-band images of compact planetary nebulae (PNe) in the Galactic Disk to study the missing link of the early phases of post-AGB evolution. Ejected AGB envelopes become PNe when the gas is ionized. PNe expand, and, when large enough, can be studied in detail from the ground. In the interim, only the HST capabilities can resolve their size, morphology, and central stars. Our proposed observations will be the basis for a systematic study of the onset of morphology. Dust properties of the proposed targets will be available through approved Spitzer/IRS spectra, and so will the abundances of the alpha-elements. We will be able thus to explore the interconnection of morphology, dust grains, stellar evolution, and populations. The target selection is suitable to explore the nebular and stellar properties across the Galactic Disk, and to set constraints on the galactic evolutionary models through the analysis of metallicity and population gradients. WFC3/UVIS 11630 Monitoring Active Atmospheres on Uranus and Neptune We propose Snapshot observations of Uranus and Neptune to monitor changes in their atmospheres on time scales of weeks and months, as we have been doing for the past seven years. Previous Hubble Space Telescope observations (including previous Snapshot programs 8634, 10170, 10534, and 11156), together with near-IR images obtained using adaptive optics on the Keck Telescope, reveal both planets to be dynamic worlds which change on time scales ranging from hours to (terrestrial) years. Uranus equinox occurred in December 2007, and the northern hemisphere is becoming fully visible for the first time since the early 1960s. HST observations during the past several years (Hammel et al. 2005, Icarus 175, 284 and references therein) have revealed strongly wavelength-dependent latitudinal structure, the presence of numerous visible-wavelength cloud features in the northern hemisphere, at least one very long- lived discrete cloud in the southern hemisphere, and in 2006 the first clearly defined dark spot seen on Uranus. Long term ground-based observations (Lockwood and Jerzekiewicz, 2006, Icarus 180, 442; Hammel and Lockwood 2007, Icarus 186, 291) reveal seasonal brightness changes that seem to demand the appearance of a bright northern polar cap within the next few years. Recent HST and Keck observations of Neptune (Sromovsky et al. 2003, Icarus 163, 256 and references therein) show a general increase in activity at south temperate latitudes until 2004, when Neptune returned to a rather Voyager-like appearance with discrete bright spots rather than active latitude bands. Further Snapshot observations of these two dynamic planets will elucidate the nature of long-term changes in their zonal atmospheric bands and clarify the processes of formation, evolution, and dissipation of discrete albedo features. WFC3/UVIS 11594 A WFC3 Grism Survey for Lyman Limit Absorption at z=2 We propose to conduct a spectroscopic survey of Lyman limit absorbers at redshifts 1.8 < z < 2.5, using WFC3 and the G280 grism. This proposal intends to complete an approved Cycle 15 SNAP program (#10878) which was cut short due to the ACS failure. We have selected 64 quasars at 2.3 < z < 2.6 from the Sloan Digital Sky Survey Spectroscopic Quasar Sample, for which no BAL signature is found at the QSO redshift and no strong metal absorption lines are present at z > 2.3 along the lines of sight. The survey has three main observational goals. First, we will determine the redshift frequency dn/dz of the LLS over the column density range 16.0 < log(NHI) < 20.3 cm^-2. Second, we will measure the column density frequency distribution f(N) for the partial Lyman limit systems (PLLS) over the column density range 16.0 < log(NHI) < 17.5 cm^-2. Third, we will identify those sightlines which could provide a measurement of the primordial D/H ratio. By carrying out this survey, we can also help place meaningful constraints on two key quantities of cosmological relevance. First, we will estimate the amount of metals in the LLS using the f(N), and ground based observations of metal line transitions. Second, by determining f(N) of the PLLS, we can constrain the amplitude of the ionizing UV background at z~2 to a greater precision. This survey is ideal for a snapshot observing program, because the on-object integration times are all well below 30 minutes, and follow-up observations from the ground require minimal telescope time due to the QSO sample being bright. WFC3/ACS/IR 11563 Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to <0.2L* from Deep IR Imaging of the HUDF and HUDF05 Fields The first generations of galaxies were assembled around redshifts z~7-10+, just 500-800 Myr after recombination, in the heart of the reionization of the universe. We know very little about galaxies in this period. Despite great effort with HST and other telescopes, less than ~15 galaxies have been reliably detected so far at z>7, contrasting with the ~1000 galaxies detected to date at z~6, just 200-400 Myr later, near the end of the reionization epoch. WFC3 IR can dramatically change this situation, enabling derivation of the galaxy luminosity function and its shape at z~7-8 to well below L*, measurement of the UV luminosity density at z~7-8 and z~8-9, and estimates of the contribution of galaxies to reionization at these epochs, as well as characterization of their properties (sizes, structure, colors). A quantitative leap in our understanding of early galaxies, and the timescales of their buildup, requires a total sample of ~100 galaxies at z~7-8 to ~29 AB mag. We can achieve this with 192 WFC3 IR orbits on three disjoint fields (minimizing cosmic variance): the HUDF and the two nearby deep fields of the HUDF05. Our program uses three WFC3 IR filters, and leverages over 600 orbits of existing ACS data, to identify, with low contamination, a large sample of over 100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits at z~10. By careful placement of the WFC3 IR and parallel ACS pointings, we also enhance the optical ACS imaging on the HUDF and a HUDF05 field. We stress (1) the need to go deep, which is paramount to define L*, the shape, and the slope alpha of the luminosity function (LF) at these high redshifts; and (2) the far superior performance of our strategy, compared with the use of strong lensing clusters, in detecting significant samples of faint z~7-8 galaxies to derive their luminosity function and UV ionizing flux. Our recent z~7.4 NICMOS results show that wide-area IR surveys, even of GOODS-like depth, simply do not reach faint enough at z~7-9 to meet the LF and UV flux objectives. In the spirit of the HDF and the HUDF, we will waive any proprietary period, and will also deliver the reduced data to STScI. The proposed data will provide a Legacy resource of great value for a wide range of archival science investigations of galaxies at redshifts z~2-9. The data are likely to remain the deepest IR/optical images until JWST is launched, and will provide sources for spectroscopic followup by JWST, ALMA and EVLA.

COS 11480

COS NUV Structural and Thermal Stability

The goal of this program is to measure OTA-COS pointing jitter or drifts, over timescales of seconds to hours. In particular, our priorities are to test the level of OSM1 drift, thermal day-night transitions and orbital ‘breathing’. Pointing-related thermal offsets with their related drifts during thermal settling will be overlayed upon the signatures of the other components of positional change. Three different instrumental configurations/transitions will be tested: NUV and FUV spectroscopy, and NUV imaging using MIRROR A. All with the PSA. No FP-POS motions, nor grating changes will be made during the spectroscopy in order to limit the variables contributing to any changes in position of the spectra.

ID: COS 20(11480) & 35(11493) This in the NUV portion of this experiment. It was initially estimated to be a 6-orbit program, but has been expanded to 10 in order to improve the statistical sample of the day-night/breathing transitions.

ACS/WFC3 11465

ACS CCD Monitoring and Calibration for WFC3

This program is a smaller version of our routine CCD monitoring program, designed to run throughout SMOV, after which our regular Cycle 17 CAL proposal will begin. This program obtains the bias and dark frames needed to generate reference files for calibrating science data, and allows us to monitor detector noise and the growth of hot pixels.

WFC3/UVIS 11446

WFC3 UVIS Dark Current, Readnoise, and CTE

This proposal obtains full-frame, four-amp readout bias and dark frames at regularly- spaced intervals throughout SMOV in order to assess and monitor dark current, bad (warm, hot, dead) pixels, and readnoise. In addition, a set of internals using the WFC3 calsystem are taken to provide a baseline CTE measurement. WFC3-33

WFC3/UVIS 11432

UVIS Internal Flats

This proposal will be used to assess the stability of the flat field structure for the UVIS detector. Flat fields will be obtained for all filters using the internal D2 and Tungsten lamps.

This proposal corresponds to Activity Description ID WF19. It should execute only after the following proposals have executed: WF08 – 11421 WF09 – 11422 WF11 – 11424 WF15 – 11428

STIS20 11402

STIS-20 NUV MAMA Dark Monitor

The STIS NUV-MAMA dark current is dominated by a phosphorescent glow from the detector window. Meta-stable states in this window are populated by cosmic ray impacts, which, days later, can be thermally excited to an unstable state from which they decay, emitting a UV photon. The equilibrium population of these meta-stable states is larger at lower temperatures; so warming up the detector from its cold safing will lead to a large, but temporary, increase in the dark current.

To monitor the decay of this glow, and to determine the equilibrium dark current for Cycle 17, four 1380s NUV-MAMA ACCUM mode darks should be taken each week during the SMOV period. Once the observed dark current has reached an approximate equilibrium with the mean detector temperature, the frequency of this monitor can be reduced to one pair of darks per week.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST:

18692-0 – Update COS OSM1 G130M, G160M, and G140L focus positions in FSW @240/17:41z

COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL

FGS GSAcq 22 22
FGS REAcq 21 21
OBAD with Maneuver 12 12

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.