Status Report

NASA Hubble Space Telescope Daily Report #4803

By SpaceRef Editor
March 8, 2009
Filed under , ,


Continuing to collect World Class Science

PERIOD COVERED: 5am March 3 – 5am March 4, 2009 (DOY 062/1000z-063/1000z)


ACS/SBC 11980

Deep FUV Imaging of Cooling Flow Clusters

We propose to take deep ACS FUV images of a carefully selected sample of 19 bright central galaxies in nearby galaxy clusters. This program is the last critical element of a comprehensive investigation of the impact of stellar and AGN feedback on the local galaxy cluster environment. The HST images will complement new, high-resolution, Halpha images obtained with the recently commissioned Maryland-Magellan Tunable Filter (MMTF) on the Baade 6.5m telescope, archival Chandra, VLA, and GALEX data, and on-going H2/NIR observations. The MMTF data have revealed unsuspected filamentary complexes in several systems. The GALEX data often show hints of extended NUV and FUV emission on a similar scale, but their poor spatial resolution prevents meaningful comparison with the MMTF data. The HST data will provide this much needed gain in resolution. The combined radio-H2-Halpha-FUV-X-ray dataset will allow us to derive with unprecedented precision the role of the AGN, hot stars, shocks, and relativistic particles on the excitation and thermodynamics of the multi-phase intracluster and interstellar media in these systems. This is an important question since the formation and evolution of most cluster galaxies have likely been affected by these processes.

WFPC2 11972

Investigating the Early Solar System with Distant Comet Nuclei

We propose 85 orbits of imaging observations with the WFPC2 to get nucleus size estimates for 8 well observed dynamically new and long-period comets at large distances from the sun when their activity levels are low. This will increase the sample of these nucleus sizes by nearly 50%, but will more than double the selection of comets for which we can run thermal models. Small icy bodies are the best preserved remnants of planet formation, and we have recently found that observationally constrained thermal models can distinguish differences in microphysical properties of comet nuclei. The new HST data will enable the first exploration of physical conditions in different regions of the early solar nebula.

WFPC2 11981

FUV Imaging Survey of Galactic Open Clusters

We propose a WFPC2 FUV imaging survey of 6 Galactic open clusters with ages ranging from 1 Myr to 300 Myr complemented with NUV/optical imaging of the same fields. No such survey has ever been attempted before in the FUV at the resolution of WFPC2 (indeed, no WFPC2 FUV images of any Galactic open cluster exist in the HST archive) and, since WFPC2 will be retired in SM4 and none of the other HST instruments can do FUV imaging of bright objects, this is the last chance to do such a survey before another UV telescope is launched. This survey will provide a new perspective on young/intermediate age Galactic clusters and a key template for the study of star formation at high redshift, where the intensity peak we observe in the optical/NIR from Earth is located in the FUV in its rest frame. For clusters still associated with an H II region, UV imaging maps the continuum emission of the ionized gas and the radiation scattered by background dust and, combined with optical nebular images, can be used to determine the 3-D structure of the H II region. For all young clusters, FUV+NUV+optical photometry can be used to study the UV excesses of T-Tauri stars. For clusters older than ~40 Myr, the same photometric combination is the easiest method to detect companion white dwarfs which are invisible using only the optical and NIR. WFPC2 is also an excellent instrument to discover close companions around bright stars and improve our knowledge of their multiplicity fraction. Finally, for all clusters, the combination of high-spatial-resolution UV and optical photometry can be used to simultaneously measure the temperature, extinction, extinction law, distance, and existence of companions (resolved and unresolved) and, thus, produce clean HR diagrams with resolved cluster membership and much-reduced systematic uncertainties.

WFPC2 11983

An Imaging Survey of Protoplanetary Disks and Brown Dwarfs in the Chamaeleon I region

We propose to carry out a HST/WFPC2 survey of young brown dwarfs, Class I and Class II sources in the Chamaelon I region, one of the best-studied star-forming regions, in order to investigate the link between disk evolution and the formation of substellar-mass objects. We will use deep broad-band imaging in the I and z-equivalent HST bands to unveil the unknown population of substellar binary companions, down to a few Jupiter masses for separations of a few tens of AU. We will also perform narrow-band imaging to directly detect accreting circumstellar disks and jets around brown dwarfs, Class-I and class-II objects. Chamaelon I is nearly coeaval of Orion (~1-2Myr) but at ~1/3 its distance, allowing 3x higher resolution and 10x more flux for comparable objects. Unlike Orion, low-mass objects and protoplanetary disks in Chamaeleon I have been extensively studied with Spitzer, but not yet with the HST. The Chamaeleon I region is an ideal HST target, as it lies in the CVZ of the HST and therefore it is easily accessible any time of the year with long orbits.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)



                        SCHEDULED      SUCCESSFUL

FGS GSAcq               05                   05
FGS REAcq               09                   09
OBAD with Maneuver      30                   30


SpaceRef staff editor.