Status Report

NASA Hubble Space Telescope Daily Report #4679

By SpaceRef Editor
August 22, 2008
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #4679

Continuing to collect World Class Science

PERIOD COVERED: 5am August 20 – 5am August 21, 2008 (DOY 233/0900z-234/0900z)

OBSERVATIONS SCHEDULED

NIC1/NIC2/NIC3 11330

NICMOS Cycle 16 Extended Dark

This takes a series of Darks in parallel to other instruments.

NIC1/NIC2/NIC3 8795

NICMOS Post-SAA Calibration – CR Persistence Part 6

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC2 11237

The Origin of the Break in the AGN Luminosity Function

We propose to use NICMOS imaging to measure rest-frame optical luminosities and morphological properties of a complete sample of faint AGN host galaxies at redshifts z ~ 1.4. The targets are drawn from the VLT-VIMOS Deep Survey, and they constitute a sample of the lowest luminosity type 1 AGN known at z > 1. The spectroscopically estimated black hole masses are up to an order of magnitude higher than expected given their nuclear luminosities, implying highly sub-Eddington accretion rates. This exactly matches the prediction made by recent theoretical models of AGN evolution, according to which the faint end of the AGN luminosity function is populated mainly by big black holes that have already exhausted a good part of their fuel. In this proposal we want to test further predictions of that hypothesis, by focusing on the host galaxy properties of our low-luminosity, low- accretion AGN. If the local ratio between black hole and bulge masses holds at least approximately at these redshifts, one expects most of these low-luminosity AGN to reside in fairly big ellipticals with stellar masses around and above 10^11 solar masses (in contrast to the Seyfert phenomenon in the local universe). With NICMOS imaging we will find out whether that is true, implying also a sensitive test for the validity of the M_BH/M_bulge relation at z ~ 1.4.

NIC2 11548

NICMOS Imaging of Protostars in the Orion A Cloud: The Role of Environment in Star Formation

We propose NICMOS observations of a sample of 252 protostars identified in the Orion A cloud with the Spitzer Space Telescope. These observations will image the scattered light escaping the protostellar envelopes, providing information on the shapes of outflow cavities, the inclinations of the protostars, and the overall morphologies of the envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron spectra of 75 of the protostars. Combining these new data with existing 3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured with the Spitzer Space Telescope, we will determine the physical properties of the protostars such as envelope density, luminosity, infall rate, and outflow cavity opening angle. By examining how these properties vary with stellar density (i.e. clusters vs groups vs isolation) and the properties of the surrounding molecular cloud; we can directly measure how the surrounding environment influences protostellar evolution, and consequently, the formation of stars and planetary systems. Ultimately, this data will guide the development of a theory of protostellar evolution.

NIC3 11512

Molecules in Exoplanet Atmospheres

We propose to characterize the conditions, composition, and chemistry in two transiting exoplanet atmospheres using molecules as probes. This will be accomplished through high precision, near-IR spectroscopy during an interval that spans the primary and/or secondary eclipse events. We have selected the hot-Jovian HD 209458b and the warm-Neptune GJ 436b for spectroscopy from 1.4 to 2.5 microns and we expect to detect the molecules H2O, CH4, CO, CO2, and NH3. We will infer the atmospheric temperature-pressure profiles and determine the abundance of detected molecules; this will be done by comparing detailed radiative transfer models with emission and transmission spectra of the exoplanet atmospheres. Taken together with the existing observations of HD 189733b, the proposed measurements will probe the diversity of exoplanet atmospheres and the effects of radiation from the stellar primary.

WFPC2 11178

Probing Solar System History with Orbits, Masses, and Colors of Transneptunian Binaries

The recent discovery of numerous transneptunian binaries {TNBs} opens a window into dynamical conditions in the protoplanetary disk where they formed as well as the history of subsequent events which sculpted the outer Solar System and emplaced them onto their present day heliocentric orbits. To date, at least 47 TNBs have been discovered, but only about a dozen have had their mutual orbits and separate colors determined, frustrating their use to investigate numerous important scientific questions. The current shortage of data especially cripples scientific investigations requiring statistical comparisons among the ensemble characteristics. We propose to obtain sufficient astrometry and photometry of 23 TNBs to compute their mutual orbits and system masses and to determine separate primary and secondary colors, roughly tripling the sample for which this information is known, as well as extending it to include systems of two near-equal size bodies. To make the most efficient possible use of HST, we will use a Monte Carlo technique to optimally schedule our observations.

WFPC2 11203

A Search for Circumstellar Disks and Planetary-Mass Companions around Brown Dwarfs in Taurus

During a 1-orbit program in Cycle 14, we used WFPC2 to obtain the first direct image of a circumstellar disk around a brown dwarf. These data have provided fundamental new constraints on the formation process of brown dwarfs and the properties of their disks. To search for additional direct detections of disks around brown dwarfs and to search for planetary-mass companions to these objects, we propose a WFPC2 survey of 32 brown dwarfs in the Taurus star-forming region.

WFPC2 11221

A Dark Core in Abell 520

We have recently discovered that the rich cluster Abell 520 exhibits truly extreme multi-wavelength characteristics. The data indicate that the cluster is the site of a major merger. Our weak lensing analysis, based on a deep CFHT image, suggests the presence of a massive dark core that coincides with the central X-ray emission peak, while being largely devoid of galaxies. Although a displacement between the X-ray gas and the galaxy/dark matter distribution may be expected in a merger (e.g. as in the bullet cluster), the dark matter peak without galaxies cannot be easily explained within the current collisionless dark matter paradigm. A higher resolution mass map is required to make further progress, as it will enable us to examine the detailed structure of the dark matter distribution, as well as improve the significance of the dark peak. We propose a 3 x 3 WFPC2 mosaic of interlaced images, where each pointing consists of two sets of F814W exposures offset by 5.5 pixels. This will precisely pinpoint the locations of the highest lensing peaks, enhance the comparison with the Chandra X-ray data, and test physical and geometrical models for the spatial and thermal structure of this remarkable cluster derived from our suite of gas+dark matter simulations of head-on/off-axis cluster mergers.

WFPC2 11544

The Dynamical Legacy of Star Formation

We propose to use WFPC2 to conduct a wide-field imaging survey of the young cluster IC348. This program, in combination with archival HST observations, will allow us to measure precise proper motions for individual cluster members, characterizing the intra-cluster velocity dispersion and directly studying the dynamical signatures of star formation and early cluster evolution. Our projected astrometric precision (~1 mas in each epoch) will allow us to calculate individual stellar velocities to unprecedented precision (<0.5 mas/yr; <1 km/s) and directly relate these velocities to observed spatial substructure within the cluster. This survey will also allow us to probe small-scale star formation physics by searching for high-velocity stars ejected from decaying multiple systems, expanding our knowledge of multiplicity in dense environments, and identifying new substellar and planetary-mass cluster members based on kinematic membership tests.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                           SCHEDULED      SUCCESSFUL
FGS GSacq                     08               08
FGS REacq                     07               07
OBAD with Maneuver            30               30

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.