Status Report

NASA Hubble Space Telescope Daily Report #4677

By SpaceRef Editor
August 20, 2008
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #4677

Continuing to collect World Class Science

PERIOD COVERED: 5am August 18 – 5am August 19, 2008 (DOY 231/0900z-232/0900z)

OBSERVATIONS SCHEDULED

ACS/SBC 10872

Lyman Continuum Emission in Galaxies at z=1.2

Lyman continuum photons produced in massive starbursts may have played a dominant role in the reionization of the Universe. Starbursts are important contributors to the ionizing metagalactic background at lower redshifts as well. However, their contribution to the background depends upon the fraction of ionizing radiation that escapes from the intrinsic opacity of galaxies below the Lyman limit. Current surveys suggest escape fractions of a few percent, up to 10%, with very few detections {as opposed to upper limits} having been reported. No detections have been reported in the epochs between z=0.1 and z=2. We propose to measure the fraction of escaping Lyman continuum radiation from 15 luminous z~1.2 galaxies in the GOODS fields. Using the tremendous sensitivity of the ACS Solar-blind Channel, we will reach AB=30 mag., allowing us to detect an escape fraction of 1%. We will correlate the amount of escaping radiation with the photometric and morphological properties of the galaxies. A non-detection in all sources would imply that QSOs provide the overwhelming majority of ionizing radiation at z=1.3, and it would strongly indicate that the properties of galaxies at higher redshift have to be significantly different for galaxies to dominate reionization. The deep FUV images will also be useful for extending the FUV study of other galaxies in the GOODS fields.

NIC1/NIC2 11172

Defining Classes of Long Period Variable Stars in M31

We propose a thrifty but information-packed investigation {1440 exposures total} with NICMOS F205W, F160W and F110W providing crucial information about Long Period Variables in M31, at a level of detail that has recently allowed the discovery of new variable star classes in the Magellanic Clouds, a very different stellar population. These observations are buttressed by an extensive map of the same fields with ACS and WFPC2 exposures in F555W and F814W, and a massive ground-based imaging patrol producing well-sampled light curves for more than 400,000 variable stars. Our primary goal is to collect sufficient NIR data in order to analyze and classify the huge number of long-period variables in our catalog {see below} through Period-Luminosity {P/L} diagrams. We will produce accurate P/L diagrams for both the bulge and a progression of locations throughout the disk of M31. These diagrams will be similar in quality to those currently in the Magellanic Clouds, with their lower metallicity, radically different star formation history, and larger spread in distance to the variables. M31 offers an excellent chance to study more typical disk populations, in a manner which might be extended to more distant galaxies where such variables are still visible, probing a much more evenly spread progenitor age distribution than cepheids {and perhaps useful as a distance scale alternative or cross-check}. Our data will also provide a massive and unique color-magnitude dataset, and allow us to confirm the microlensing nature of a large sample of candidate lensed sources in M31. We expect that this study will produce several important results, among them a better understanding of P/L and P/L-color relations for pulsating variables which are essential to the extragalactic distance ladder, will view these variables at a common distance over a range of metallicities {eliminating the distance- error vs. metallicity ambiguity between the LMC and SMC}, allow further insight into possible faint-variable mass-loss for higher metallicities, and in general produce a sample more typical of giant disk galaxies predominant in many studies.

NIC1/NIC2/NIC3 8795

NICMOS Post-SAA Calibration – CR Persistence Part 6

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC2 11548

NICMOS Imaging of Protostars in the Orion A Cloud: The Role of Environment in Star Formation

We propose NICMOS observations of a sample of 252 protostars identified in the Orion A cloud with the Spitzer Space Telescope. These observations will image the scattered light escaping the protostellar envelopes, providing information on the shapes of outflow cavities, the inclinations of the protostars, and the overall morphologies of the envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron spectra of 75 of the protostars. Combining these new data with existing 3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured with the Spitzer Space Telescope, we will determine the physical properties of the protostars such as envelope density, luminosity, infall rate, and outflow cavity opening angle. By examining how these properties vary with stellar density (i.e. clusters vs groups vs isolation) and the properties of the surrounding molecular cloud; we can directly measure how the surrounding environment influences protostellar evolution, and consequently, the formation of stars and planetary systems. Ultimately, this data will guide the development of a theory of protostellar evolution.

NIC3/WFPC2 11192

NICMOS Confirmation of Candidates of the Most Luminous Galaxies at z > 7

While the deepest pencil-beam near-IR survey suggested that the Universe was too young to build up many luminous galaxies by z ~ 7–8 (Bouwens & Illingworth 2006), there is also evidence indicating the contrary. It is now known that some galaxies with stellar masses of M>1e10 Msun were already in place by z ~ 6–7, which strongly suggests that their progenitors should be significantly more luminous, and hence detectable in deep, wide-field near-IR surveys (Yan et al. 2006). As galaxies at such a high redshift should manifest themselves as “dropouts” from the optical, we have carried out a very wide-field, deep near-IR survey in the GOODS fields to search for z-band dropouts as candidates of galaxies at z > 7. In total, six promising candidates have been found in ~ 300 sq. arcmin to J_AB ~ 24.5 mag (corresponding to restframe M(UV) < -22.5 mag at z ~ 7). By contrast, the galaxy luminosity function (LF) suggested in BI06 would predict at most 3--5 galaxies over the entire 2-pi sky at this brightness level. Here we propose to observe these candidates with NIC3 in F110W and F160W to further investigate their nature. If any of these candidates are indeed at z > 7, the result will lead to a completely new picture of star formation in the early universe. If none of our candidates are consistent with being at z > 7, then the depth and area of our near-IR survey (from which the candidates are drawn) will let us set a very stringent upper limit on the bright end of the galaxy LF at those redshift. As a result, our program will still be able to provide new clues about the processes of early galaxy formation, such as their dust contents and their merging time scale (Yan et al. 2006).

WFPC2 11113

Binaries in the Kuiper Belt: Probes of Solar System Formation and Evolution

The discovery of binaries in the Kuiper Belt and related small body populations is powering a revolutionary step forward in the study of this remote region. Three quarters of the known binaries in the Kuiper Belt have been discovered with HST, most by our snapshot surveys. The statistics derived from this work are beginning to yield surprising and unexpected results. We have found a strong concentration of binaries among low-inclination Classicals, a possible size cutoff to binaries among the Centaurs, an apparent preference for nearly equal mass binaries, and a strong increase in the number of binaries at small separations. We propose to continue this successful program in Cycle 16; we expect to discover at least 13 new binary systems, targeted to subgroups where these discoveries can have the greatest impact.

WFPC2 11203

A Search for Circumstellar Disks and Planetary-Mass Companions around Brown Dwarfs in Taurus

During a 1-orbit program in Cycle 14, we used WFPC2 to obtain the first direct image of a circumstellar disk around a brown dwarf. These data have provided fundamental new constraints on the formation process of brown dwarfs and the properties of their disks. To search for additional direct detections of disks around brown dwarfs and to search for planetary-mass companions to these objects, we propose a WFPC2 survey of 32 brown dwarfs in the Taurus star-forming region.

WFPC2 11235

HST NICMOS Survey of the Nuclear Regions of Luminous Infrared Galaxies in the Local Universe

At luminosities above 10^11.4 L_sun, the space density of far-infrared selected galaxies exceeds that of optically selected galaxies. These `luminous infrared galaxies’ {LIRGs} are primarily interacting or merging disk galaxies undergoing enhanced star formation and Active Galactic Nuclei {AGN} activity, possibly triggered as the objects transform into massive S0 and elliptical merger remnants. We propose NICMOS NIC2 imaging of the nuclear regions of a complete sample of 88 L_IR > 10^11.4 L_sun luminous infrared galaxies in the IRAS Revised Bright Galaxy Sample {RBGS: i.e., 60 micron flux density > 5.24 Jy}. This sample is ideal not only in its completeness and sample size, but also in the proximity and brightness of the galaxies. The superb sensitivity and resolution of NICMOS NIC2 on HST enables a unique opportunity to study the detailed structure of the nuclear regions, where dust obscuration may mask star clusters, AGN and additional nuclei from optical view, with a resolution significantly higher than possible with Spitzer IRAC. This survey thus provides a crucial component to our study of the dynamics and evolution of IR galaxies presently underway with Wide-Field, HST ACS/WFC and Spitzer IRAC observations of these 88 galaxies. Imaging will be done with the F160W filter {H-band} to examine as a function of both luminosity and merger stage {i} the luminosity and distribution of embedded star clusters, {ii} the presence of optically obscured AGN and nuclei, {iii} the correlation between the distribution of 1.6 micron emission and the mid-IR emission as detected by Spitzer IRAC, {iv} the evidence of bars or bridges that may funnel fuel into the nuclear region, and {v} the ages of star clusters for which photometry is available via ACS/WFC observations. The NICMOS data, combined with the HST ACS, Spitzer, and GALEX observations of this sample, will result in the most comprehensive study of merging and interacting galaxies to date.

WFPC2 11302

WFPC2 CYCLE 16 Standard Darks – Part III

This dark calibration program obtains dark frames every week in order to provide data for the ongoing calibration of the CCD dark current rate, and to monitor and characterize the evolution of hot pixels. Over an extended period these data will also provide a monitor of radiation damage to the CCDs.

WFPC2 11793

WFPC2 Cycle 16 Internal Monitor

This calibration proposal is the Cycle 15 routine internal monitor for WFPC2, to be run weekly to monitor the health of the cameras. A variety of internal exposures are obtained in order to provide a monitor of the integrity of the CCD camera electronics in both bays (both gain 7 and gain 15 — to test stability of gains and bias levels), a test for quantum efficiency in the CCDs, and a monitor for possible buildup of contaminants on the CCD windows. These also provide raw data for generating annual super-bias reference files for the calibration pipeline.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

11448 – GSACQ(2,0,2) failed while LOS

Upon acquisition of signal at 231/21:31:14 vehicle was in gyro control with QF2STOPF and QSTOP flags set. GSACQ(2,0,2) at 21:11:27 failed to RGA control. #44 commands did not change since previous acquisition.

Observations affected: NICMOS 38 to 40, proposal 11548.

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                       SCHEDULED      SUCCESSFUL

FGS GSacq               10                  09
FGS REacq               05                  05
OBAD with Maneuver      28                  28

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.