Status Report

NASA Hubble Space Telescope Daily Report # 4631

By SpaceRef Editor
June 17, 2008
Filed under , ,
NASA Hubble Space Telescope Daily Report # 4631


Continuing to collect World Class Science

PERIOD COVERED: 5am June 12 – 5am June 13, 2008 (DOY 164/0900z-165/0900z)


FGS 11213

Distances to Eclipsing M Dwarf Binaries

We propose HST FGS observations to measure accurate distances of 5 nearby M dwarf eclipsing binary systems, from which model-independent luminosities can be calculated. These objects have either poor or no existing parallax measurements. FGS parallax determinations for these systems, with their existing dynamic masses determined to better than 0.5%, would serve as model-independent anchor points for the low-mass end of the mass-luminosity diagram.

NIC1/NIC2/NIC3 8795

NICMOS Post-SAA Calibration – CR Persistence Part 6

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC2/WFPC2 11142

Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3< z <2.7 Using HST and Spitzer

We aim to determine physical properties of IR luminous galaxies at 0.3< z<2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations of a unique, 24um flux-limited sample with complete Spitzer mid-IR spectroscopy. The 150 sources investigated in this program have S{24um} > 0.8mJy and their mid-IR spectra have already provided the majority

targets with spectroscopic redshifts {0.3< z<2.7}. The proposed 150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical measurements of the light distribution at the rest-frame ~8000A and better estimates of the bolometric luminosity. Combining these parameters together with the rich suite of spectral diagnostics from the mid-IR spectra, we will {1} measure how common mergers are among LIRGs and ULIRGs at 0.3< z<2.7, and establish if major mergers are the drivers of z>1 ULIRGs, as in the local Universe. {2} study the co-evolution of star formation and blackhole accretion by investigating the relations between the fraction of starburst/AGN measured from mid-IR spectra vs. HST morphologies, L{bol} and z. {3} obtain the current best estimates of the far-IR emission, thus L{bol} for this sample, and establish if the relative contribution of mid-to-far IR dust emission is correlated with morphology {resolved vs. unresolved}.

NIC3 11107

Imaging of Local Lyman Break Galaxy Analogs: New Clues to Galaxy Formation in the Early Universe

We have used the ultraviolet all-sky imaging survey currently being conducted by the Galaxy Evolution Explorer {GALEX} to identify for the first time a rare population of low-redshift starbursts with properties remarkably similar to high-redshift Lyman Break Galaxies {LBGs}. These “compact UV luminous galaxies” {UVLGs} resemble LBGs in terms of size, SFR, surface brightness, mass, metallicity, kinematics, dust, and color. The UVLG sample offers the unique opportunity of investigating some very important properties of LBGs that have remained virtually inaccessible at high redshift: their morphology and the mechanism that drives their star formation. Therefore, in Cycle 15 we have imaged 7 UVLGs using ACS in order to 1} characterize their morphology and look for signs of interactions and mergers, and 2} probe their star formation histories over a variety of timescales. The images show a striking trend of small- scale mergers turning large amounts of gas into vigorous starbursts {a process referred to as dissipational or “wet” merging}. Here, we propose to complete our sample of 31 LBG analogs using the ACS/SBC F150LP {FUV} and WFPC2 F606W {R} filters in order to create a statistical sample to study the mechanism that triggers star formation in UVLGs and its implications for the nature of LBGs. Specifically, we will 1} study the trend between galaxy merging and SFR in UVLGs, 2} artificially redshift the FUV images to z=1-4 and compare morphologies with those in similarly sized samples of LBGs at the same rest-frame wavelengths in e.g. GOODS, UDF, and COSMOS, 3} determine the presence and morphology of significant stellar mass in “pre- burst” stars, and 4} study their immediate environment. Together with our Spitzer {IRAC+MIPS}, GALEX, SDSS and radio data, the HST observations will form a unique union of data that may for the first time shed light on how the earliest major episodes of star formation in high redshift galaxies came about. This proposal was adapted from an ACS HRC+WFC proposal to meet the new Cycle 16 observing constraints, and can be carried out using the ACS/SBC and WFPC2 without compromising our original science goals.

WFPC2 11222

Direct Detection and Mapping of Star Forming Regions in Nearby, Luminous Quasars

We propose to carry out narrow-band emission line imaging observations of 8 quasars at z=0.05-0.15 with the WFPC2 ramp filters and with the NICMOS narrow-band filters. We will obtain images in the [O II], [O III], H-beta, and Pa-alpha emission line bands to carry out a series of diagnostic tests aimed at detecting and mapping out star-forming regions in the quasar host galaxies. This direct detection of star-forming regions will confirm indirect indications for star formation in quasar host galaxies. It will provide a crucial test for models of quasar and galaxy evolution, that predict the co-existence of starbursts and “monsters” and will solve the puzzle of why different indicators of star formation give contradictory results. A secondary science goal is to assess suggested correlations between quasar luminosity and the size of the narrow-line region.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)



                        SCHEDULED      SUCCESSFUL

FGS GSacq                03                  03
FGS REacq                11                  11
OBAD with Maneuver       28                   28


SpaceRef staff editor.