Status Report

NASA Hubble Space Telescope Daily Report # 4620

By SpaceRef Editor
May 29, 2008
Filed under , ,
NASA Hubble Space Telescope Daily Report # 4620
http://images.spaceref.com/news/hubble.2.jpg

HUBBLE SPACE TELESCOPE DAILY REPORT # 4620

Continuing to collect World Class Science

PERIOD COVERED: 5am May 28 – 5am May 29, 2008 (DOY 149/0900z-150/0900z)

OBSERVATIONS SCHEDULED

FGS 11212

Filling the Period Gap for Massive Binaries

The current census of binaries among the massive O-type stars is seriously incomplete for systems in the period range from years to millennia because the radial velocity variations are too small and the angular separations too close for easy detection. Here we propose to discover binaries in this observational gap through a Faint Guidance Sensor SNAP survey of relatively bright targets listed in the Galactic O Star Catalog. Our primary goal is to determine the binary frequency among those in the cluster/association, field, and runaway groups. The results will help us assess the role of binaries in massive star formation and in the processes that lead to the ejection of massive stars from their natal clusters. The program will also lead to the identification of new, close binaries that will be targets of long term spectroscopic and high angular resolution observations to determine their masses and distances. The results will also be important for the interpretation of the spectra of suspected and newly identified binary and multiple systems.

NIC1/NIC2 11155

Dust Grain Evolution in Herbig Ae Stars: NICMOS Coronagraphic Imaging and Polarimetry

We propose to take advantage of the sensitive coronagraphic capabilities of NICMOS to obtain multiwavelength coronagraphic imaging and polarimetry of primordial dust disks around young intermediate-mass stars {Herbig Ae stars}, in order to advance our understanding of how dust grains are assembled into larger bodies. Because the polarization of scattered light is strongly dependent on scattering particle size and composition, coronagraphic imaging polarimetry with NICMOS provides a uniquely powerful tool for measuring grain properties in spatially resolved circumstellar disks. It is widely believed that planets form via the gradual accretion of planetesimals in gas-rich, dusty circumstellar disks, but the connection between this suspected process and the circumstellar disks that we can now observe around other stars remains very uncertain. Our proposed observations, together with powerful 3-D radiative transfer codes, will enable us to quantitatively determine dust grain properties as a function of location within disks, and thus to test whether dust grains around young stars are in fact growing in size during the putative planet-formation epoch. HST imaging polarimetry of Herbig Ae stars will complement and extend existing polarimetric studies of disks around lower-mass T Tauri stars and debris disks around older main-sequence stars. When combined with these previous studies, the proposed research will help us establish the influence of stellar mass on the growth of dust grains into larger planetesimals, and ultimately to planets. Our results will also let us calibrate models of the thermal emission from these disks, a critical need for validating the properties of more distant disks inferred on the basis of spectral information alone.

NIC1/NIC2/NIC3 8795

NICMOS Post-SAA calibration – CR Persistence Part 6

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science i mages. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC3 11120

A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic Center

The Galactic center (GC) is a unique site for a detailed study of a multitude of complex astrophysical phenomena, which may be common to nuclear regions of many galaxies. Observable at resolutions unapproachable in other galaxies, the GC provides an unparalleled opportunity to improve our understanding of the interrelationships of massive stars, young stellar clusters, warm and hot ionized gases, molecular clouds, large scale magnetic fields, and black holes. We propose the first large-scale hydrogen Paschen alpha line survey of the GC using NICMOS on the Hubble Space Telescope. This survey will lead to a high resolution and high sensitivity map of the Paschen alpha line emission in addition to a map of foreground extinction, made by comparing Paschen alpha to radio emission. This survey of the inner 75 pc of the Galaxy will provide an unprecedented and complete search for sites of massive star formation. In particular, we will be able to (1) uncover the distribution of young massive stars in this region, (2) locate the surfaces of adjacent molecular clouds, (3) determine important physical parameters of the ionized gas, (4) identify compact and ultra-compact HII regions throughout the GC. When combined with existing Chandra and Spitzer surveys as well as a wealth of other multi-wavelength observations, the results will allow us to address such questions as where and how massive stars form, how stellar clusters are disrupted, how massive stars shape and heat the surrounding medium, and how various phases of this medium are interspersed.

NIC3 11333

NICMOS non-linearity tests

This program incorporates a number of tests to analyze the count rate dependent non-linearity seen in NICMOS spectro-photometric observations.

We will observe a field with stars of a range in luminosity in NGC3603 with NICMOS in NIC1: F090M, F110W, F140W, F160W NIC2: F110W, F160W, F187W, F205W, and F222M NIC3: F110W, F150W, F160W, F175W, and F222M. We will repeat the observations with flatfield lamp on, creating artificially high count-rates, allowing tests of NICMOS linearity as function of count rate. We first take exposures with the lamp off, then exposures with the lamp on, and repeat at the end with lamp off. Finally, we continue with taking darks during occultation.

We will furthermore observe spectro-photometric standard P041C using the G096, G141, and G206 grisms in NIC3, and repeat the lamp off/on/off test to artificially create a high background.

WFPC2 11103

A Snapshot Survey of The Most Massive Clusters of Galaxies

We propose the continuation of our highly successful SNAPshot survey of a sample of 125 very X-ray luminous clusters in the redshift range 0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14 and Cycle15 these systems frequently exhibit strong gravitational lensing as well as spectacular examples of violent galaxy interactions. The proposed observations will provide important constraints on the cluster mass distributions, the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. All of our primary science goals require only the detection and characterization of high-surface-brightness features and are thus achievable even at the reduced sensitivity of WFPC2. Because of their high redshift and thus compact angular scale our target clusters are less adversely affected by the smaller field of view of WFPC2 than more nearby systems. Acknowledging the broad community interest in this sample we waive our data rights for these observations. Due to a clerical error at STScI our approved Cycle15 SNAP program was barred from execution for 3 months and only 6 observations have been performed to date – reinstating this SNAP at Cycle16 priority is of paramount importance to reach meaningful statistics.

WFPC2 11227

The orbital period for an ultraluminous X-ray source in NGC1313

The ultraluminous X-ray sources {ULXs} are extragalactic point sources with luminosities that exceed the Eddington luminosity for conventional stellar-mass black holes by factors of 10 – 100. It has been hotly debated whether the ULXs are just common stellar-mass black hole sources with beamed emission or whether they are sub-Eddington sources that are powered by the long-sought intermediate mass black holes {IMBH}. To firmly decide this question, one must obtain dynamical mass measurements through photometric and spectroscopic monitoring of the secondaries of these system. The crucial first step is to establish the orbital period of a ULX, and arguably the best way to achieve this goal is by monitoring its ellipsoidal light curve. The extreme ULX NGC1313 X-2 provides an outstanding target for an orbital period determination because its relatively bright optical counterpart {V = 23.5} showed a 15% variation between two HST observations separated by three months. This level of variability is consistent with that expected for a tidally distorted secondary star. Here we propose a set of 20 imaging observations with HST/WFPC2 to define the orbital period. This would be the first photometric measurement of the orbital period of a ULX binary. Subsequently, we will propose to obtain spectroscopic observations to obtain its radial velocity amplitude and thereby a dynamical estimate of its mass.

WFPC2 11235

HST NICMOS Survey of the Nuclear Regions of Luminous Infrared Galaxies in the Local Universe

At luminosities above 10^11.4 L_sun, the space density of far-infrared selected galaxies exceeds that of optically selected galaxies. These `luminous infrared galaxies’ {LIRGs} are primarily interacting or merging disk galaxies undergoing enhanced star formation and Active Galactic Nuclei {AGN} activity, possibly triggered as the objects transform into massive S0 and elliptical merger remnants. We propose NICMOS NIC2 imaging of the nuclear regions of a complete sample of 88 L_IR > 10^11.4 L_sun luminous infrared galaxies in the IRAS Revised Bright Galaxy Sample {RBGS: i.e., 60 micron flux density > 5.24 Jy}. This sample is ideal not only in its completeness and sample size, but also in the proximity and brightness of the galaxies. The superb sensitivity and resolution of NICMOS NIC2 on HST enables a unique opportunity to study the detailed structure of the nuclear regions, where dust obscuration may mask star clusters, AGN and additional nuclei from optical view, with a resolution significantly higher than possible with Spitzer IRAC. This survey thus provides a crucial component to our study of the dynamics and evolution of IR galaxies presently underway with Wide-Field, HST ACS/WFC and Spitzer IRAC observations of these 88 galaxies. Imaging will be done with the F160W filter {H-band} to examine as a function of both luminosity and merger stage {i} the luminosity and distribution of embedded star clusters, {ii} the presence of optically obscured AGN and nuclei, {iii} the correlation between the distribution of 1.6 micron emission and the mid- IR emission as detected by Spitzer IRAC, {iv} the evidence of bars or bridges that may funnel fuel into the nuclear region, and {v} the ages of star clusters for which photometry is available via ACS/WFC observations. The NICMOS data, combined with the HST ACS, Spitzer, and GALEX observations of this sample, will result in the most comprehensive study of merging and interacting galaxies to date.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

11323 – GSaqc(2,1,2) failed to RGA control

GSacq(2,1,2) scheduled at 149/1913:45 failed to RGA control at 19:17:11. There were no error flags. ESB message “a07” FGS Coarse Track failed -Timed out waiting for data valid. OBAD1 showed errors of V1=963.29, V2=1802.49, V3=-2686.73 and RSS=3375.71. ODAB2 showed errors of V1=-3.07, V2=-1.47, V3=19.89 and RSS=20.18. The Map at 19:21:00 showed errors of V1=-35.89, V2=-29.99, V3=-6.43 and RSS=47.21.

COMPLETED OPS REQUEST:

18237-0 – Execute ROP NS-11 Reset NICMOS Error Counter @ 149/22:06z

COMPLETED OPS NOTES: (None)

                       SCHEDULED      SUCCESSFUL
FGS GSacq               11                 10
FGS REacq               02                 02
OBAD with Maneuver      26                 26

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.