Status Report

NASA Hubble Space Telescope Daily Report #4472

By SpaceRef Editor
October 22, 2007
Filed under , ,
NASA Hubble Space Telescope Daily Report  #4472
http://images.spaceref.com/news/hubble.2.jpg

Notice: Due to the conversion of some ACS WFC or HRC observations into WFPC2, or NICMOS observations after the loss of ACS CCD science capability in January, there may be an occasional discrepancy between a proposal’s listed (and correct) instrument usage and the abstract that follows it.

HUBBLE SPACE TELESCOPE DAILY REPORT # 4472

– Continuing to collect World Class Science

PERIOD COVERED: UT October 19,20,21, 2007 (DOY 292,293,294)

OBSERVATIONS SCHEDULED

NIC1/NIC2/NIC3 8794

NICMOS Post-SAA calibration – CR Persistence Part 5

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non- standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=3Ddate/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC3 11334

NICMOS Cycle 16 Spectrophotometry

Observation of the three primary WD flux standards must be repeated to refine the NICMOS absolute calibration and monitor for sensitivity degradation. So far, NICMOS grism spectrophotometry is available for only ~16 stars with good STIS spectra at shorter wavelengths. There are more in the HST CALSPEC standard star data base with good STIS spectra that would also become precise IR standards with NICMOS absolute SED measurements. Monitoring the crucial three very red stars (M, L, T) for variability and better S/N in the IR. Apparent variability was discovered at shorter wavelengths during the ACS cross-calibration work that revealed a ~2% discrepancy of the cool star fluxes with respect to the hot primary WD standards. About a third of these stars are bright enough to do in one orbit, the rest require 2 orbits.

WFPC2 11296

HST Observations of Astrophysically Important Visual Binaries

This is a continuation of a project begun in Cycle 7 and continued up through Cycle 14. The program consists of annual FGS or WFPC2 observations of three visual binary stars that will yield fundamental astrophysical results, once their orbits and masses are determined. Our targets are the following: {1} Procyon {P =3D 40.9 yr}, for which our first WFPC2 images yielded an extremely accurate angular separation of the bright F star and its much fainter white-dwarf companion. Combined with ground-based astrometry of the bright star, our observation significantly revised downward the derived masses, and brought Procyon A into much better agreement with theoretical evolutionary masses for the first time. With the continued monitoring proposed here, we will obtain masses to an accuracy of better than 1%, providing a testbed for theories of both Sun-like stars and white dwarfs. {2} G 107-70, a close double white dwarf {P =3D 18.5 yr} that promises to add two accurate masses to the tiny handful of white-dwarf masses that are directly known from dynamical measurements. {3} Mu Cas {P =3D 20.8 yr}, a famous nearby metal-deficient G dwarf for which accurate masses will lead to the stars’ helium contents, with cosmological implications. For all three stars, we will also be setting increasingly stringent limits on the presence of planetary- mass bodies in the systems.

FGS 11213

Distances to Eclipsing M Dwarf Binaries

We propose HST FGS observations to measure accurate distances of 5 nearby M dwarf eclipsing binary systems, from which model-independent luminosities can be calculated. These objects have either poor or no existing parallax measurements. FGS parallax determinations for these systems, with their existing dynamic masses determined to better than 0.5%, would serve as model-independent anchor points for the low-mass end of the mass-luminosity diagram.

FGS 11211

An Astrometric Calibration of Population II Distance Indicators

In 2002 HST produced a highly precise parallax for RR Lyrae. That measurement resulted in an absolute magnitude, M{V}=3D 0.61+/-0.11, a useful result, judged by the over ten refereed citations each year since. It is, however, unsatisfactory to have the direct, parallax-based, distance scale of Population II variables based on a single star. We propose, therefore, to obtain the parallaxes of four additional RR Lyrae stars and two Population II Cepheids, or W Vir stars. The Population II Cepheids lie with the RR Lyrae stars on a common K-band Period-Luminosity relation. Using these parallaxes to inform that relationship, we anticipate a zero-point error of 0.04 magnitude. This result should greatly strengthen confidence in the Population II distance scale and increase our understanding of RR Lyrae star and Pop II Cepheid astrophysics.

FGS 11210

The Architecture of Exoplanetary Systems

Are all planetary systems coplanar? Concordance cosmogony makes that prediction. It is, however, a prediction of extrasolar planetary system architecture as yet untested by direct observation for main sequence stars other than the Sun. To provide such a test, we propose to carry out FGS astrometric studies on four stars hosting seven companions. Our understanding of the planet formation process will grow as we match not only system architecture, but formed planet mass and true distance from the primary with host star characteristics for a wide variety of host stars and exoplanet masses. We propose that a series of FGS astrometric observations with demonstrated 1 millisecond of arc per- observation precision can establish the degree of coplanarity and component true masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD 128311 {planet+planet}, HD 160691 =3D mu Arae {planet+planet}, and HD 222404AB =3D gamma Cephei {planet+star}. In each case the companion is identified as such by assuming that the minimum mass is the actual mass. For the last target, a known stellar binary system, the companion orbit is stable only if coplanar with the AB binary orbit.

WFPC2 11202

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

The structure, formation and evolution of early-type galaxies is still largely an open problem in cosmology: how does the Universe evolve from large linear scales dominated by dark matter to the highly non-linear scales of galaxies, where baryons and dark matter both play important, interacting, roles? To understand the complex physical processes involved in their formation scenario, and why they have the tight scaling relations that we observe today {e.g. the Fundamental Plane}, it is critically important not only to understand their stellar structure, but also their dark-matter distribution from the smallest to the largest scales. Over the last three years the SLACS collaboration has developed a toolbox to tackle these issues in a unique and encompassing way by combining new non-parametric strong lensing techniques, stellar dynamics, and most recently weak gravitational lensing, with high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic data of early-type lens systems. This allows us to break degeneracies that are inherent to each of these techniques separately and probe the mass structure of early-type galaxies from 0.1 to 100 effective radii. The large dynamic range to which lensing is sensitive allows us both to probe the clumpy substructure of these galaxies, as well as their low-density outer haloes. These methods have convincingly been demonstrated, by our team, using smaller pilot-samples of SLACS lens systems with HST data. In this proposal, we request observing time with WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain complete multi-color imaging for each system. This would bring the total number of SLACS lens systems to 87 with completed HST imaging and effectively doubles the known number of galaxy-scale strong lenses. The deep HST images enable us to fully exploit our new techniques, beat down low-number statistics, and probe the structure and evolution of early-type galaxies, not only with a uniform data-set an order of magnitude larger than what is available now, but also with a fully coherent and self-consistent methodological approach!

WFPC2 11178

Probing Solar System History with Orbits, Masses, and Colors of Transneptunian Binaries

The recent discovery of numerous transneptunian binaries {TNBs} opens a window into dynamical conditions in the protoplanetary disk where they formed as well as the history of subsequent events which sculpted the outer Solar System and emplaced them onto their present day heliocentric orbits. To date, at least 47 TNBs have been discovered, but only about a dozen have had their mutual orbits and separate colors determined, frustrating their use to investigate numerous important scientific questions. The current shortage of data especially cripples scientific investigations requiring statistical comparisons among the ensemble characteristics. We propose to obtain sufficient astrometry and photometry of 23 TNBs to compute their mutual orbits and system masses and to determine separate primary and secondary colors, roughly tripling the sample for which this information is known, as well as extending it to include systems of two near-equal size bodies. To make the most efficient possible use of HST, we will use a Monte Carlo technique to optimally schedule our observations.

WFPC2 11169

Collisions in the Kuiper belt

For most of the 15 year history of observations of Kuiper belt objects, it has been speculated that impacts must have played a major role in shaping the physical and chemical characteristics of these objects, yet little direct evidence of the effects of such impacts has been seen. The past 18 months, however, have seen an explosion of major new discoveries giving some of the first insights into the influence of this critical process. From a diversity of observations we have been led to the hypotheses that: {1} satellite- forming impacts must have been common in the Kuiper belt; {2} such impacts led to significant chemical modification; and {3} the outcomes of these impacts are sufficiently predictable that we can now find and study these impact-derived systems by the chemical and physical attributes of both the satellites and the primaries. If our picture is correct, we now have in hand for the first time a set of incredibly powerful tools to study the frequency and outcome of collisions in the outer solar system. Here we propose three linked projects that would answer questions critical to the multiple prongs of our hypothesis. In these projects we will study the chemical effects of collisions through spectrophotometric observations of collisionally formed satellites and through the search for additional satellites around primaries with potential impact signatures, and we will study the physical effects of impacts through the examination of tidal evolution in proposed impact systems. The intensive HST program that we propose here will allow us to fully test our new hypotheses and will provide the ability to obtain the first extensive insights into outer solar system impact processes.

WFPC2 11141

White dwarfs in the open star cluster NGC 188

White dwarf cooling sequences represent the only ways in which we can determine ages of Galactic components such as the disk and the halo, and they are an independent check on main sequence ages of globular star clusters. These age measurements rely heavily on theoretical cooling models, many of which disagree by as much as a few gigayears for the coolest white dwarfs. Further, observations of the white dwarf sequence in the super metal- rich open cluster NGC 6791 have found a white dwarf age several gigayears younger than the accepted cluster age determined by main-sequence fitting. The white dwarf sequence of the solar-metallicity, 7-Gyr old open cluster NGC 188 can provide some much-needed insight into these uncertainties, but previous HST observations were too shallow to detect the oldest, faintest white dwarfs in the cluster. We propose deep imaging of two fields at the center of the cluster with the following goals: {1} To detect the end of the white dwarf cooling sequence, providing a much-needed empirical data point for cool white dwarf evolutionary models, {2} to compare the white dwarf luminosity function of NGC 188 with that of NGC 6791 to determine if the odd white dwarf sequence in the latter cluster is due to the cluster’s high metallicity or due to a shortcoming in theoretical models, and {3} to determine via photometry the masses of white dwarfs formed by solar-mass stars, a quantity not yet empirically measured.

WFPC2 11114

Improving proper motion measurements of the stars in the field of SN 1572 with WFPC2

We propose to complete the spatial velocity measurements of the stars in the central region of the remnant of SN 1572, one of the historical Galactic Type Ia supernovae. A new visit with WFPC2 would allow us to significantly improve the accuracy of the proper motion measurements of the stars in the field, since we would benefit from a long temporal baseline by using the WFPC2 images previously taken. This unique legacy would complement the high-precision ground-based observations made for the stars in the SN 1572 field during the past ten years. The search for the companion star of Galactic Type Ia supernovae, based on their high peculiar velocity as a salient feature, has already pointed to a good candidate for SN 1572. The current uncertainties in the tangential velocity of the candidate star and the other stars in the field can be reduced to less than a half with a visit in Cycle 16. This would lead to a precise determination of the parameters of the binary system that gave rise to the supernova. If not done during Cycle 16, the long temporal baseline for SN 1572 with WFPC2 would be lost.

NIC2 11101

The Relevance of Mergers for Fueling AGNs: Answers from QSO Host Galaxies

The majority of QSOs are known to reside in centers of galaxies that look like ellipticals. Numerical simulations have shown that remnants of galaxy mergers often closely resemble elliptical galaxies. However, it is still strongly debated whether the majority of QSO host galaxies are indeed the result of relatively recent mergers or whether they are completely analogous to inactive ellipticals to which nothing interesting has happened recently. To address this question, we recently obtained deep HST ACS images for five QSO host galaxies that were classified morphologically as ellipticals {GO-10421}. This pilot study revealed striking signs of tidal interactions such as ripples, tidal tails, and warped disks that were not detected in previous studies. Our observations show that at least some “elliptical” QSO host galaxies are the products of relatively recent merger events rather than old galaxies formed at high redshift. However, the question remains whether the host galaxies of classical QSOs are truly distinct from inactive ellipticals and whether there is a connection between the merger events we detect and the current nuclear activity. We must therefore place our results into a larger statistical context. We are currently conducting an HST archival study of inactive elliptical galaxies {AR-10941} to form a control sample. We now propose to obtain deep HST/WFPC2 images of 13 QSOs whose host galaxies are classified as normal ellipticals. Comparing the results for both samples will help us determine whether classical QSOs reside in normal elliptical galaxies or not. Our recent pilot study of five QSOs indicates that we can expect exciting results and deep insights into the host galaxy morphology also for this larger sample of QSOs. A statistically meaningful sample will help us determine the true fraction of QSO hosts that suffered strong tidal interactions and thus, whether a merger is indeed a requirement to trigger nuclear activity in the most luminous AGNs. In addition to our primary science observations with WFPC2, we will obtain NICMOS3 parallel observations with the overall goal to select and characterize galaxy populations at high redshifts. The imaging will be among the deepest NICMOS images: These NICMOS images are expected to go to a limit a little over 1 magnitude brighter than HUDF-NICMOS data, but over 13 widely separated fields, with a total area about 1.5 times larger than HUDF-NICMOS. This separation means that the survey will tend to average out effects of cosmic variance. The NICMOS3 images will have sufficient resolution for an initial characterization of galaxy morphologies, which is currently one of the most active and promising areas in approaching the problem of the formation of the first massive galaxies. The depth and area coverage of our proposed NICMOS observations will also allow a careful study of the mass function of galaxies at these redshifts. This provides a large and unbiased sample, selected in terms of stellar mass and unaffected by cosmic variance, to study the on-going star formation activity as a function of mass {i.e. integrated star formation} at this very important epoch.

WFPC2 11084

Probing the Least Luminous Galaxies in the Local Universe

We propose to obtain deep color-magnitude data of eight new Local Group galaxies which we recently discovered: Andromeda XI, Andromeda XII, and Andromeda XIII {satellites of M31}; Canes Venatici I, Canes Venatici II, Hercules, and Leo IV {satellites of the Milky Way}; and Leo T, a new “free-floating” Local Group dwarf spheroidal with evidence for recent star formation and associated H I gas. These represent the least luminous galaxies known at *any* redshift, and are the only accessible laboratories for studying this extreme regime of galaxy formation. With deep WFPC-2 F606W and F814W pointings at their centers, we will determine whether these objects contain single or multiple age stellar populations, as well as whether these objects display a range of metallicities.

NIC3 11082

NICMOS Imaging of GOODS: Probing the Evolution of the Earliest Massive Galaxies, Galaxies Beyond Reionization, and the High Redshift Obscured Universe

(uses ACS/SBC and WFPC2)

Deep near-infrared imaging provides the only avenue towards understanding a host of astrophysical problems, including: finding galaxies and AGN at z > 7, the evolution of the most massive galaxies, the triggering of star formation in dusty galaxies, and revealing properties of obscured AGN. As such, we propose to observe 60 selected areas of the GOODS North and South fields with NICMOS Camera 3 in the F160W band pointed at known massive M > 10^11 M_0 galaxies at z > 2 discovered through deep Spitzer imaging. The depth we will reach {26.5 AB at 5 sigma} in H_160 allows us to study the internal properties of these galaxies, including their sizes and morphologies, and to understand how scaling relations such as the Kormendy relationship evolved. Although NIC3 is out of focus and undersampled, it is currently our best opportunity to study these galaxies, while also sampling enough area to perform a general NIR survey 1/3 the size of an ACS GOODS field. These data will be a significant resource, invaluable for many other science goals, including discovering high redshift galaxies at z > 7, the evolution of galaxies onto the Hubble sequence, as well as examining obscured AGN and dusty star formation at z > 1.5. The GOODS fields are the natural location for HST to perform a deep NICMOS imaging program, as extensive data from space and ground based observatories such as Chandra, GALEX, Spitzer, NOAO, Keck, Subaru, VLT, JCMT, and the VLA are currently available for these regions. Deep high-resolution near-infrared observations are the one missing ingredient to this survey, filling in an important gap to create the deepest, largest, and most uniform data set for studying the faint and distant universe. The importance of these images will increase with time as new facilities come on line, most notably WFC3 and ALMA, and for the planning of future JWST observations.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

11033 – Guide Star Acquisition Failure (GSacq 2,3,2) At acquisition of signal, Day 294 04:42:05, there was a STOP flag for FGS 3.

Post acquisition MAP had an RSS of 8.56 arcsec. Pre-acquisition data is unavailable until engineering data is dumped.

                        SCHEDULED      SUCCESSFUL

FGS GSacq                20                  19
FGS REacq                23                  23
OBAD with Maneuver       86                  86

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.