Status Report

NASA Hubble Space Telescope Daily Report #4464

By SpaceRef Editor
October 11, 2007
Filed under , ,
NASA Hubble Space Telescope Daily Report #4464
http://images.spaceref.com/news/hubble.jpg

Notice: Due to the conversion of some ACS WFC or HRC observations into WFPC2, or NICMOS observations after the loss of ACS CCD science capability in January, there may be an occasional discrepancy between a proposal’s listed (and correct) instrument usage and the abstract that follows it.

HUBBLE SPACE TELESCOPE DAILY REPORT # 4464

– Continuing to collect World Class Science

DAILY REPORT # 4464

PERIOD COVERED: UT October 09, 2007 (DOY 282)

OBSERVATIONS SCHEDULED

ACS/SBC WFPC2 11175

UV Imaging to Determine the Location of Residual Star Formation in Galaxies Recently Arrived on the Red Sequence

We have identified a sample of low-redshift {z =3D 0.04 – 0.10} galaxies that are candidates for recent arrival on the red sequence. They have red optical colors indicative of old stellar populations, but blue UV-optical colors that could indicate the presence of a small quantity of continuing or very recent star formation. However, their spectra lack the emission lines that characterize star-forming galaxies. We propose to use ACS/SBC to obtain high- resolution imaging of the UV flux in these galaxies, in order to determine the spatial distribution of the last episode of star formation. WFPC2 imaging will provide B, V, and I photometry to measure the main stellar light distribution of the galaxy for comparison with the UV imaging, as well as to measure color gradients and the distribution of interstellar dust. This detailed morphological information will allow us to investigate the hypothesis that these galaxies have recently stopped forming stars and to compare the observed distribution of the last star formation with predictions for several different mechanisms that may quench star formation in galaxies.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration – CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non- standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=3Ddate/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC2 11143

NICMOS imaging of submillimeter galaxies with CO and PAH redshifts

We propose to obtain F110W and F160W imaging of 10 z~2.4 submillimeter galaxies {SMGs} whose optical redshifts have been confirmed by the detection of millimeter CO and/or mid-infrared PAH emission. With the 4000A break falling within/between the two imaging filters, we will be able to study these sources’ spatially resolved stellar populations {modulo extinction} in the rest-frame optical. SMGs’ large luminosities appear to be due largely to merger-triggered starbursts; high-resolution NICMOS imaging will help us understand the stellar masses, mass ratios, and other properties of the merger progenitors, valuable information in the effort to model the mass assembly history of the universe.

NIC2 11155

Dust Grain Evolution in Herbig Ae Stars: NICMOS Coronagraphic Imaging and Polarimetry

We propose to take advantage of the sensitive coronagraphic capabilities of NICMOS to obtain multiwavelength coronagraphic imaging and polarimetry of primordial dust disks around young intermediate-mass stars {Herbig Ae stars}, in order to advance our understanding of how dust grains are assembled into larger bodies. Because the polarization of scattered light is strongly dependent on scattering particle size and composition, coronagraphic imaging polarimetry with NICMOS provides a uniquely powerful tool for measuring grain properties in spatially resolved circumstellar disks. It is widely believed that planets form via the gradual accretion of planetesimals in gas-rich, dusty circumstellar disks, but the connection between this suspected process and the circumstellar disks that we can now observe around other stars remains very uncertain. Our proposed observations, together with powerful 3-D radiative transfer codes, will enable us to quantitatively determine dust grain properties as a function of location within disks, and thus to test whether dust grains around young stars are in fact growing in size during the putative planet-formation epoch. HST imaging polarimetry of Herbig Ae stars will complement and extend existing polarimetric studies of disks around lower-mass T Tauri stars and debris disks around older main-sequence stars. When combined with these previous studies, the proposed research will help us establish the influence of stellar mass on the growth of dust grains into larger planetesimals, and ultimately to planets. Our results will also let us calibrate models of the thermal emission from these disks, a critical need for validating the properties of more distant disks inferred on the basis of spectral information alone.

NIC3 11082

NICMOS Imaging of GOODS: Probing the Evolution of the Earliest Massive Galaxies, Galaxies Beyond Reionization, and the High Redshift Obscured Universe

(uses ACS/SBC and WFPC2)

Deep near-infrared imaging provides the only avenue towards understanding a host of astrophysical problems, including: finding galaxies and AGN at z > 7, the evolution of the most massive galaxies, the triggering of star formation in dusty galaxies, and revealing properties of obscured AGN. As such, we propose to observe 60 selected areas of the GOODS North and South fields with NICMOS Camera 3 in the F160W band pointed at known massive M > 10^11 M_0 galaxies at z > 2 discovered through deep Spitzer imaging. The depth we will reach {26.5 AB at 5 sigma} in H_160 allows us to study the internal properties of these galaxies, including their sizes and morphologies, and to understand how scaling relations such as the Kormendy relationship evolved. Although NIC3 is out of focus and undersampled, it is currently our best opportunity to study these galaxies, while also sampling enough area to perform a general NIR survey 1/3 the size of an ACS GOODS field. These data will be a significant resource, invaluable for many other science goals, including discovering high redshift galaxies at z > 7, the evolution of galaxies onto the Hubble sequence, as well as examining obscured AGN and dusty star formation at z > 1.5. The GOODS fields are the natural location for HST to perform a deep NICMOS imaging program, as extensive data from space and ground based observatories such as Chandra, GALEX, Spitzer, NOAO, Keck, Subaru, VLT, JCMT, and the VLA are currently available for these regions. Deep high-resolution near-infrared observations are the one missing ingredient to this survey, filling in an important gap to create the deepest, largest, and most uniform data set for studying the faint and distant universe. The importance of these images will increase with time as new facilities come on line, most notably WFC3 and ALMA, and for the planning of future JWST observations.

WFPC2 11178

Probing Solar System History with Orbits, Masses, and Colors of Transneptunian Binaries

The recent discovery of numerous transneptunian binaries {TNBs} opens a window into dynamical conditions in the protoplanetary disk where they formed as well as the history of subsequent events which sculpted the outer Solar System and emplaced them onto their present day heliocentric orbits. To date, at least 47 TNBs have been discovered, but only about a dozen have had their mutual orbits and separate colors determined, frustrating their use to investigate numerous important scientific questions. The current shortage of data especially cripples scientific investigations requiring statistical comparisons among the ensemble characteristics. We propose to obtain sufficient astrometry and photometry of 23 TNBs to compute their mutual orbits and system masses and to determine separate primary and secondary colors, roughly tripling the sample for which this information is known, as well as extending it to include systems of two near-equal size bodies. To make the most efficient possible use of HST, we will use a Monte Carlo technique to optimally schedule our observations.

WFPC2 11227

The orbital period for an ultraluminous X-ray source in NGC1313

The ultraluminous X-ray sources {ULXs} are extragalactic point sources with luminosities that exceed the Eddington luminosity for conventional stellar-mass black holes by factors of 10 – 100. It has been hotly debated whether the ULXs are just common stellar-mass black hole sources with beamed emission or whether they are sub-Eddington sources that are powered by the long-sought intermediate mass black holes {IMBH}. To firmly decide this question, one must obtain dynamical mass measurements through photometric and spectroscopic monitoring of the secondaries of these system. The crucial first step is to establish the orbital period of a ULX, and arguably the best way to achieve this goal is by monitoring its ellipsoidal light curve. The extreme ULX NGC1313 X-2 provides an outstanding target for an orbital period determination because its relatively bright optical counterpart {V =3D 23.5} showed a 15% variation between two HST observations separated by three months. This level of variability is consistent with that expected for a tidally distorted secondary star. Here we propose a set of 20 imaging observations with HST/WFPC2 to define the orbital period. This would be the first photometric measurement of the orbital period of a ULX binary. Subsequently, we will propose to obtain spectroscopic observations to obtain its radial velocity amplitude and thereby a dynamical estimate of its mass.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: #11017 REAcq(2,1,1) Failed due to Scan step Limit Exceeded on FGS3 @282/1256z At 282/12:56:00 REAcq (2,1,1) scheduled from 282/12:53:02-13:00:11 failed due to Scan Step Limit Exceeded on FGS 2. OBAD #1: V1 -507.67, V2 -727.65, V3 220.50, RSS 914.23

OBAD #2: V1 0.31, V2 0.80, V3 0.22, RSS 0.89

OBAD MAP: Not scheduled

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                         SCHEDULED      SUCCESSFUL
FGS GSacq                   08             08
FGS REacq                   07             06
OBAD with Maneuver          30             30


SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.