NASA Hubble Space Telescope Daily Report #4429

Notice: Due to the conversion of some ACS WFC or HRC observations into WFPC2, or NICMOS observations after the loss of ACS CCD science capability in January, there may be an occasional discrepancy between a proposal’s listed (and correct) instrument usage and the abstract that follows it.
HUBBLE SPACE TELESCOPE DAILY REPORT #4429
– Continuing to collect World Class Science
PERIOD COVERED: UT August 17,18,19, 2007 (DOY 229,230,231) OBSERVATIONS SCHEDULED
NIC1/NIC2/NIC3 8794
NICMOS Post-SAA calibration – CR Persistence Part 5
A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non- standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.
WFPC2 11312
The Local Cluster Substructure Survey {LoCuSS}: Deep Strong Lensing Observations with WFPC2
LoCuSS is a systematic and detailed investigation of the mass, substructure, and thermodynamics of 100 X-ray luminous galaxy clusters at 0.15< z<0.3. The primary goal is to test our recent suggestion that this population is dominated by dynamically immature disturbed clusters, and that the observed mass-temperature relation suffers strong structural segregation. If confirmed, this would represent a paradigm shift in our observational understanding of clusters, that were hitherto believed to be dominated by mature, undisturbed systems. We propose to complete our successful Cycle 15 program {SNAP:10881} which prior to premature termination had delivered robust weak-lensing detections in 17 clusters, and candidate strongly-lensed arcs in 11 of these 17. These strong and weak lensing signals will give an accurate measure of the total mass and structure of the dark matter distribution that we will subsequently compare with X-ray and Sunyaev Zeldovich Effect observables. The broader applications of our project include 1} the calibration of mass-temperature and mass-SZE scaling relations which will be critical for the calibration of proposed dark energy experiments, and 2} the low redshift baseline study of the demographics of massive clusters to aid interpretation of future high redshift {z>1} cluster samples. To complete the all-important high resolution imaging component of our survey, we request deep WFPC2 observations of 20 clusters through the F606W filter, for which wide-field weak-lensing data are already available from our Subaru imaging program. The combination of deep WFPC2 and Subaru data for these 20 clusters will enable us to achieve the science program approved by the Cycle 15 TAC.
NIC2 11219
Active Galactic Nuclei in nearby galaxies: a new view of the origin of the radio-loud radio- quiet dichotomy?
Using archival HST and Chandra observations of 34 nearby early-type galaxies {drawn from a complete radio selected sample} we have found evidence that the radio-loud/radio-quiet dichotomy is directly connected to the structure of the inner regions of their host galaxies in the following sense: [1] Radio-loud AGN are associated with galaxies with shallow cores in their light profiles [2] Radio-quiet AGN are only hosted by galaxies with steep cusps. Since the brightness profile is determined by the galaxy’s evolution, through its merger history, our results suggest that the same process sets the AGN flavour. This provides us with a novel tool to explore the co-evolution of galaxies and supermassive black holes, and it opens a new path to understand the origin of the radio-loud/radio-quiet AGN dichotomy. Currently our analysis is statistically incomplete as the brightness profile is not available for 82 of the 116 targets. Most galaxies were not observed with HST, while in some cases the study is obstructed by the presence of dust features. We here propose to perform an infrared NICMOS snapshot survey of these 82 galaxies. This will enable us to i} test the reality of the dichotomic behaviour in a substantially larger sample; ii} extend the comparison between radio-loud and radio-quiet AGN to a larger range of luminosities.
FGS 11212
Filling the Period Gap for Massive Binaries
The current census of binaries among the massive O-type stars is seriously incomplete for systems in the period range from years to millennia because the radial velocity variations are too small and the angular separations too close for easy detection. Here we propose to discover binaries in this observational gap through a Faint Guidance Sensor SNAP survey of relatively bright targets listed in the Galactic O Star Catalog. Our primary goal is to determine the binary frequency among those in the cluster/association, field, and runaway groups. The results will help us assess the role of binaries in massive star formation and in the processes that lead to the ejection of massive stars from their natal clusters. The program will also lead to the identification of new, close binaries that will be targets of long term spectroscopic and high angular resolution observations to determine their masses and distances. The results will also be important for the interpretation of the spectra of suspected and newly identified binary and multiple systems.
WFPC2 11203
A Search for Circumstellar Disks and Planetary-Mass Companions around Brown Dwarfs in Taurus
During a 1-orbit program in Cycle 14, we used WFPC2 to obtain the first direct image of a circumstellar disk around a brown dwarf. These data have provided fundamental new constraints on the formation process of brown dwarfs and the properties of their disks. To search for additional direct detections of disks around brown dwarfs and to search for planetary-mass companions to these objects, we propose a WFPC2 survey of 32 brown dwarfs in the Taurus star-forming region.
WFPC2 11179
Dynamics of Clumpy Supersonic Flows in Stellar Jets and in the Laboratory
We propose to reobserve three stellar jets in order to quantify how rapidly clumps in these flows accelerate and decelerate, and to compare the results with ongoing numerical simulations and laboratory experiments. Each jet has been imaged twice before with HST, and precise proper motions have been measured for all emitting knots in the jets. Images from the first two epochs show clear differential motions between adjacent clumps, as well as shear, and possibly fragmentation. The proposed third epoch will enable us to measure the first ever accelerations in jets, quantify errors in existing proper motion measurements, and observe in real time how fluid instabilities develop in supersonic flows. The new images will make it possible to compare the behavior of astrophysical flows directly with numerical simulations and with laboratory experiments of bow shocks and clumpy flows in progress at the Omega laser facility.
WFPC2 11178
Probing Solar System History with Orbits, Masses, and Colors of Transneptunian Binaries
The recent discovery of numerous transneptunian binaries {TNBs} opens a window into dynamical conditions in the protoplanetary disk where they formed as well as the history of subsequent events which sculpted the outer Solar System and emplaced them onto their present day heliocentric orbits. To date, at least 47 TNBs have been discovered, but only about a dozen have had their mutual orbits and separate colors determined, frustrating their use to investigate numerous important scientific questions. The current shortage of data especially cripples scientific investigations requiring statistical comparisons among the ensemble characteristics. We propose to obtain sufficient astrometry and photometry of 23 TNBs to compute their mutual orbits and system masses and to determine separate primary and secondary colors, roughly tripling the sample for which this information is known, as well as extending it to include systems of two near-equal size bodies. To make the most efficient possible use of HST, we will use a Monte Carlo technique to optimally schedule our observations.
ACS/SBC WFPC2 11175
UV Imaging to Determine the Location of Residual Star Formation in Galaxies Recently Arrived on the Red Sequence
We have identified a sample of low-redshift {z = 0.04 – 0.10} galaxies that are candidates for recent arrival on the red sequence. They have red optical colors indicative of old stellar populations, but blue UV-optical colors that could indicate the presence of a small quantity of continuing or very recent star formation. However, their spectra lack the emission lines that characterize star-forming galaxies. We propose to use ACS/SBC to obtain high- resolution imaging of the UV flux in these galaxies, in order to determine the spatial distribution of the last episode of star formation. WFPC2 imaging will provide B, V, and I photometry to measure the main stellar light distribution of the galaxy for comparison with the UV imaging, as well as to measure color gradients and the distribution of interstellar dust. This detailed morphological information will allow us to investigate the hypothesis that these galaxies have recently stopped forming stars and to compare the observed distribution of the last star formation with predictions for several different mechanisms that may quench star formation in galaxies.
WFPC2 11156
Monitoring Active Atmospheres on Uranus and Neptune
We propose Snapshot observations of Uranus and Neptune to monitor changes in their atmospheres on time scales of weeks and months. Uranus equinox is only months away, in December 2007. Hubble Space Telescope observations during the past several years {Hammel et al. 2005, Icarus 175, 284 and references therein} have revealed strongly wavelength-dependent latitudinal structure, the presence of numerous visible-wavelength cloud features in the northern hemisphere, at least one very long-lived discrete cloud in the southern hemisphere, and in 2006 the first dark spot ever seen on Uranus. Long-term ground-based observations {Lockwood and Jerzekiewicz, 2006, Icarus 180, 442; Hammel and Lockwood 2007, Icarus 186, 291} reveal seasonal brightness changes whose origins are not well understood. Recent near-IR images of Neptune obtained using adaptive optics on the Keck Telescope, together with HST observations {Sromovsky et al. 2003, Icarus 163, 256 and references therein} which include previous Snapshot programs {GO 8634, 10170, 10534} show a general increase in activity at south temperate latitudes until 2004, when Neptune returned to a rather Voyager-like appearance. Further Snapshot observations of these two dynamic planets will elucidate the nature of long-term changes in their zonal atmospheric bands and clarify the processes of formation, evolution, and dissipation of discrete albedo features.
WFPC2 11030
WFPC2 WF4 Temperature Reduction #3
In the fall of 2005, a serious anomaly was found in images from the WF4 CCD in WFPC2. The WF4 CCD bias level appeared to have become unstable, resulting in sporadic images with either low or zero bias level. The severity and frequency of the problem was rapidly increasing, making it possible that WF4 would soon become unusable if no work-around were found. Examination of bias levels during periods with frequent WFPC2 images showed low and zero bias episodes every 4 to 6 hours. This periodicity is driven by cycling of the WFPC2 Replacement Heater, with the bias anomalies occurring at the temperature peaks. The other three CCDs {PC1, WF2, and WF3} appear to be unaffected and continue to operate properly. Lowering the Replacement Heater temperature set points by a few degrees C effectively eliminates the WF4 anomaly. On 9 January 2006, the upper set point of the WFPC2 Replacement Heater was reduced from 14.9C to 12.2C. On 20 February 2006, the upper set point was reduced from 12.2C to 11.3C, and the lower set point was reduced from 10.9C to 10.0C. These changes restored the WF4 CCD bias level; however, the bias level has begun to trend downwards again, mimicking its behavior in late 2004 and early 2005. A third temperature reduction is planned for March 2007. We will reduce the upper set point of the heater from 11.3C to 10.4C and the lower set point from 10.0C to 9.1C. The observations described in this proposal will test the performance of WFPC2 before and after this temperature reduction. Additional temperature reductions may be needed in the future, depending on the performance of WF4. Orbits: internal 26, external 1.
ACS/SBC 10872
Lyman Continuum Emission in Galaxies at z=1.2
Lyman continuum photons produced in massive starbursts may have played a dominant role in the reionization of the Universe. Starbursts are important contributors to the ionizing metagalactic background at lower redshifts as well. However, their contribution to the background depends upon the fraction of ionizing radiation that escapes from the intrinsic opacity of galaxies below the Lyman limit. Current surveys suggest escape fractions of a few percent, up to 10%, with very few detections {as opposed to upper limits} having been reported. No detections have been reported in the epochs between z=0.1 and z=2. We propose to measure the fraction of escaping Lyman continuum radiation from 15 luminous z~1.2 galaxies in the GOODS fields. Using the tremendous sensitivity of the ACS Solar- blind Channel, we will reach AB=30 mag., allowing us to detect an escape fraction of 1%. We will correlate the amount of escaping radiation with the photometric and morphological properties of the galaxies. A non-detection in all sources would imply that QSOs provide the overwhelming majority of ionizing radiation at z=1.3, and it would strongly indicate that the properties of galaxies at higher redshift have to be significantly different for galaxies to dominate reionization. The deep FUV images will also be useful for extending the FUV study of other galaxies in the GOODS fields.
WFPC2 10787
Modes of Star Formation and Nuclear Activity in an Early Universe Laboratory
Nearby compact galaxy groups are uniquely suited to exploring the mechanisms of star formation amid repeated and ongoing gravitational encounters, conditions similar to those of the high redshift universe. These dense groups host a variety of modes of star formation, and they enable fresh insights into the role of gas in galaxy evolution. With Spitzer mid-IR observations in hand, we have begun to obtain high quality, multi-wavelength data for a well- defined sample of 12 nearby {<4500km/s} compact groups covering the full range of evolutionary stages. Here we propose to obtain sensitive BVI images with the ACS/WFC, deep enough to reach the turnover of the globular cluster luminosity function, and WFPC2 U-band and ACS H-alpha images of Spitzer-identified regions hosting the most recent star formation. In total, we expect to detect over 1000 young star clusters forming inside and outside galaxies, more than 4000 old globular clusters in >40 giant galaxies {including 16 early-type galaxies}, over 20 tidal
features, approximately 15 AGNs, and intragroup gas in most of the 12 groups. Combining the proposed ACS images with Chandra observations, UV GALEX observations, ground-based H-alpha imaging, and HI data, we will conduct a detailed study of stellar nurseries, dust, gas kinematics, and AGN.
WFPC2 10599
Multi-color imaging of two 1 Gyr old debris disks within 20 pc of the Sun: Astrophysical mirrors of our Kuiper Belt
We report the first scattered light detections of two debris disk around an F star and a K star using optical coronagraphy and the Hubble Space Telescope. With ages ~1 Gyr, these are the oldest debris disks thus far seen in the optical. We propose deep, multi-roll angle coronagraphic imaging with HST ACS and NICMOS to confirm and characterize the disks in terms of structure and composition. The disks appear to have belt-like morphology that is consistent with the existence of planetary companions or other perturbing bodies. Since these disks are close to our Kuiper Belt in an evolutionary context, detailed understanding of their mass, structure and composition will provide a fresh perspective for inferring the history and properties of our own trans-Neptunian region.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS: (None)
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL FGS GSacq 23 23 FGS REacq 18 18 OBAD with Maneuver 82 82
SIGNIFICANT EVENTS:
We’ve received the first internal flat-field images after reducing the WFPC2 Replacement Heater temperature set points on Tuesday. Everything looks good so far. The WF4 CCD bias levels are back in the 290 – 305 DN range, which is very close to normal. Changes in optical alignment are small and in the expected range. All the images so far look nominal.
We are reviewing additional calibration data, including images of the star cluster Omega Cen, which should provide a good check on the image quality. We’ll update the status early this week.