Status Report

NASA Hubble Space Telescope Daily Report #4425

By SpaceRef Editor
August 14, 2007
Filed under , ,
NASA Hubble Space Telescope Daily Report #4425

Notice: Due to the conversion of some ACS WFC or HRC observations into WFPC2, or NICMOS observations after the loss of ACS CCD science capability in January, there may be an occasional discrepancy between a proposal’s listed (and correct) instrument usage and the abstract that follows it.


– Continuing to collect World Class Science

PERIOD COVERED: UT August 13, 2007 (DOY 225)



UV Imaging to Determine the Location of Residual Star Formation in Galaxies Recently Arrived on the Red Sequence We have identified a sample of low-redshift {z = 0.04 – 0.10} galaxies that are candidates for recent arrival on the red sequence. They have red optical colors indicative of old stellar populations, but blue UV-optical colors that could indicate the presence of a small quantity of continuing or very recent star formation. However, their spectra lack the emission lines that characterize star-forming galaxies. We propose to use ACS/SBC to obtain high- resolution imaging of the UV flux in these galaxies, in order to determine the spatial distribution of the last episode of star formation. WFPC2 imaging will provide B, V, and I photometry to measure the main stellar light distribution of the galaxy for comparison with the UV imaging, as well as to measure color gradients and the distribution of interstellar dust. This detailed morphological information will allow us to investigate the hypothesis that these galaxies have recently stopped forming stars and to compare the observed distribution of the last star formation with predictions for several different mechanisms that may quench star formation in galaxies.

WFPC2 11024


This calibration proposal is the Cycle 15 routine internal monitor for WFPC2, to be run weekly to monitor the health of the cameras. A variety of internal exposures are obtained in order to provide a monitor of the integrity of the CCD camera electronics in both bays {both gain 7 and gain 15 — to test stability of gains and bias levels}, a test for quantum efficiency in the CCDs, and a monitor for possible buildup of contaminants on the CCD windows. These also provide raw data for generating annual super-bias reference files for the calibration pipeline.

WFPC2 11133

Late-Time Photometry of SN 2005hk: A New Kind of Type Ia Supernova

Our lack of understanding of Type Ia supernova {SN Ia} explosions limits our confidence in their use for cosmology. While there is broad agreement that these objects represent the explosions of white dwarfs, the details of the explosion mechanism are not well- understood. Recent observations have detected a previously unacknowledged variant class of SNe Ia whose photometric and spectroscopic peculiarities make them quite distinct from normal SNe Ia. These objects represent a challenge for thermonuclear supernova models, as a complete theory of exploding white dwarfs must allow for their existence. A particularly well-studied example of this class of objects is the recent SN 2005hk, whose properties in some respects resemble those of models which invoke a subsonic burning front, called a deflagration. We propose to test SN Ia models by obtaining late-time photometry for this extreme SN Ia using WFPC2 and NICMOS on HST. We will accurately measure the late-time photometric decline rate and spectral energy distribution {SED}. These observations will allow us to test whether the ejecta contain the large amount of oxygen predicted by certain models, the efficiency of energy deposition by gamma rays and positrons, and possibly detect major evolution of the SED expected due to a change in the dominant cooling mechanism of the ejecta.

WFPC2 11023

WFPC2 CYCLE 15 Standard Darks – part 1

This dark calibration program obtains dark frames every week in order to provide data for the ongoing calibration of the CCD dark current rate, and to monitor and characterize the evolution of hot pixels. Over an extended period these data will also provide a monitor of radiation damage to the CCDs.

WFPC2 11169

Collisions in the Kuiper belt

For most of the 15 year history of observations of Kuiper belt objects, it has been speculated that impacts must have played a major role in shaping the physical and chemical characteristics of these objects, yet little direct evidence of the effects of such impacts has been seen. The past 18 months, however, have seen an explosion of major new discoveries giving some of the first insights into the influence of this critical process. From a diversity of observations we have been led to the hypotheses that: {1} satellite- forming impacts must have been common in the Kuiper belt; {2} such impacts led to significant chemical modification; and {3} the outcomes of these impacts are sufficiently predictable that we can now find and study these impact-derived systems by the chemical and physical attributes of both the satellites and the primaries. If our picture is correct, we now have in hand for the first time a set of incredibly powerful tools to study the frequency and outcome of collisions in the outer solar system. Here we propose three linked projects that would answer questions critical to the multiple prongs of our hypothesis. In these projects we will study the chemical effects of collisions through spectrophotometric observations of collisionally formed satellites and through the search for additional satellites around primaries with potential impact signatures, and we will study the physical effects of impacts through the examination of tidal evolution in proposed impact systems. The intensive HST program that we propose here will allow us to fully test our new hypotheses and will provide the ability to obtain the first extensive insights into outer solar system impact processes.

WFPC2 11176

Location and the Origin of Short Gamma-Ray Bursts

During the past decade extraordinary progress has been made in determining the origin of long-duration gamma-ray bursts. It has been conclusively shown that these objects derive from the deaths of massive stars. Nonetheless, the origin of their observational cousins, short-duration gamma-ray bursts {SGRBs} remains a mystery. While SGRBs are widely thought to result from the inspiral of compact binaries, this is a conjecture. A number of hosts of SGRBs have been identified, and have been used by some to argue that SGRBs derive primarily from an ancient population {~ 5 Gyr}; however, it is not known whether this conclusion more accurately reflects selection biases or astrophysics. Here we propose to employ a variant of a technique that we pioneered and used to great effect in elucidating the origins of long-duration bursts. We will examine the degree to which SGRB locations trace the red or blue light of their hosts, and thus old or young stellar populations. This approach will allow us to study the demographics of the SGRB population in a manner largely free of the distance dependent selection effects which have so far bedeviled this field, and should give direct insight into the age of the SGRB progenitor population.

WFPC2 11178

Probing Solar System History with Orbits, Masses, and Colors of Transneptunian Binaries

The recent discovery of numerous transneptunian binaries {TNBs} opens a window into dynamical conditions in the protoplanetary disk where they formed as well as the history of subsequent events which sculpted the outer Solar System and emplaced them onto their present day heliocentric orbits. To date, at least 47 TNBs have been discovered, but only about a dozen have had their mutual orbits and separate colors determined, frustrating their use to investigate numerous important scientific questions. The current shortage of data especially cripples scientific investigations requiring statistical comparisons among the ensemble characteristics. We propose to obtain sufficient astrometry and photometry of 23 TNBs to compute their mutual orbits and system masses and to determine separate primary and secondary colors, roughly tripling the sample for which this information is known, as well as extending it to include systems of two near-equal size bodies. To make the most efficient possible use of HST, we will use a Monte Carlo technique to optimally schedule our observations.

WFPC2 11292

The Ring Plane Crossings of Uranus in 2007

The rings of Uranus turn edge-on to Earth in May and August 2007. In between, we will have a rare opportunity to see the unlit face of the rings. With the nine optically thick rings essentially invisible, we will observe features and phenomena that are normally lost in their glare. We will use this opportunity to search thoroughly for the embedded “shepherd” moons long believed to confine the edges of the rings, setting a mass limit roughly 10 times smaller than that of the smallest shepherd currently known, Cordelia. We will measure the vertical thicknesses of the rings and study the faint dust belts only known to exist from a single Voyager image. We will also study the colors of the newly-discovered faint, outer rings; recent evidence suggests that one ring is red and the other blue, implying that each ring is dominated by a different set of physical processes. We will employ near- edge-on photometry from 2006 and 2007 to derive the particle filling factor within the rings, to observe how ring epsilon responds to the “traffic jam” as particles pass through its narrowest point, and to test the latest models for preserving eccentricities and apse alignment within the rings. Moreover, this data set will allow us to continue monitoring the motions of the inner moons, which have been found to show possibly chaotic orbital variations; by nearly doubling the time span of the existing Hubble astrometry, the details of the variations will become much clearer.

WFPC2 11312

The Local Cluster Substructure Survey {LoCuSS}: Deep Strong Lensing Observations with WFPC2

LoCuSS is a systematic and detailed investigation of the mass, substructure, and thermodynamics of 100 X-ray luminous galaxy clusters at 0.151} cluster samples. To complete the all-important high resolution imaging component of our survey, we request deep WFPC2 observations of 20 clusters through the F606W filter, for which wide-field weak-lensing data are already available from our Subaru imaging program. The combination of deep WFPC2 and Subaru data for these 20 clusters will enable us to achieve the science program approved by the Cycle 15 TAC.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)


                       SCHEDULED      SUCCESSFUL 
FGS GSacq               07                07 
FGS REacq               08                08 
OBAD with Maneuver      30                30 


SpaceRef staff editor.