Status Report

NASA Hubble Space Telescope Daily Report #4424

By SpaceRef Editor
August 13, 2007
Filed under , ,
NASA Hubble Space Telescope Daily Report  #4424
http://images.spaceref.com/news/hubble.jpg

Notice: Due to the conversion of some ACS WFC or HRC observations into WFPC2, or NICMOS observations after the loss of ACS CCD science capability in January, there may be an occasional discrepancy between a proposal’s listed (and correct) instrument usage and the abstract that follows it.

HUBBLE SPACE TELESCOPE DAILY REPORT # 4424

– Continuing to collect World Class Science

PERIOD COVERED: UT August 10,11,12, 2007 (DOY 222, 223, 224) OBSERVATIONS SCHEDULED

NIC1/NIC2/NIC3 8794

NICMOS Post-SAA calibration – CR Persistence Part 5 A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non- standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

WFPC2 11312

The Local Cluster Substructure Survey {LoCuSS}: Deep Strong Lensing Observations with WFPC2

LoCuSS is a systematic and detailed investigation of the mass, substructure, and thermodynamics of 100 X-ray luminous galaxy clusters at 0.151} cluster samples. To complete the all-important high resolution imaging component of our survey, we request deep WFPC2 observations of 20 clusters through the F606W filter, for which wide-field weak-lensing data are already available from our Subaru imaging program. The combination of deep WFPC2 and Subaru data for these 20 clusters will enable us to achieve the science program approved by the Cycle 15 TAC.

WFPC2 11307

Completing the ACS Nearby Galaxy Survey with WFPC2

We are requesting 25 orbits of Director’s Discretionary Time to complete the primary science goals of our highly-ranked ACS Nearby Galaxy Survey Treasury program {ANGST}. Our program lost ~2/3 of its orbits due to the ACS failure. Roughly half of these were restored as a result of an appeal to the Telescope Time Review Board which re-scoped the program. The Board’s response to our appeal was explicit in terms of which targets were to be observed and how. We were directed to request Director’s discretionary time for the components of the appeal which were not granted by the Review Board, but which were vital to the success of the program. The observing strategy for ANGST is two-fold: to obtain one deep field per galaxy which enables derivation of an accurate ancient star formation history, and to obtain radial tilings sufficient for recovering the full star formation history. The Review Board granted WFPC2 observations for deep fields in 7 galaxies, but no time for radial tilings. However, recovering the full star formation history of a galaxy is not possible without additional radial coverage. We have searched the archives for observations which may be used in place of the tilings {conceding some of the Treasury goals, but providing significant constraints on the full star formation history}, and have identified suitable observations for all but two of the galaxies. Here we request DD time for radial tilings for those last two galaxies.

FGS 11298

Calibrating Cosmological Chronometers: White Dwarf Masses

We propose to use HST/FGS1R to determine White Dwarf {WD} masses. The unmatched resolving power of HST/FGS1R will be utilized to follow up four selected WD binary pairs. This high precision obtained with HST/FGS1R simply cannot be equaled by any ground based technique.  This proposed effort complements that done by CoI Nelan in which a sample of WDs is being observed with HST/FGS1R. This proposal will dramatically increase the number of WDs for which dynamical mass measurements are possible, enabling a better calibration of the WD mass-radius relation, cooling curves, initial to final mass relations, and ultimately giving important clues to the star formation history of our Galaxy and the age of its disk as well as in other galaxies.  {This project is part of Subasavage’s PhD thesis work at Georgia State University.}

WFPC2 11289

SL2S: The Strong Lensing Legacy Survey

Recent systematic surveys of strong galaxy-galaxy lenses {CLASS, SLACS, GOODS, etc.} are producing spectacular results for galaxy masses roughly below a transition mass M~10^13 Mo. The observed lens properties and their evolution up to z~0.2, consistent with numerical simulations, can be described by isothermal elliptical potentials. In contrast, modeling of giant arcs in X-ray luminous clusters {halo masses M >~10^13 Mo} favors NFW mass profiles, suggesting that dark matter halos are not significantly affected by baryon cooling. Until recently, lensing surveys were neither deep nor extended enough to probe the intermediate mass density regime, which is fundamental for understanding the assembly of structures. The CFHT Legacy Survey now covers 125 square degrees, and thus offers a large reservoir of strong lenses probing a large range of mass densities up to z~1. We have extracted a list of 150 strong lenses using the most recent CFHTLS data release via automated procedures. Following our first SNAPSHOT proposal in cycle 15, we propose to continue the Hubble follow-up targeting a larger list of 130 lensing candidates. These are intermediate mass range candidates {between galaxies and clusters} that are selected in the redshift range of 0.2-1 with no a priori X-ray selection. The HST resolution is necessary for confirming the lensing candidates, accurate modeling of the lenses, and probing the total mass concentration in galaxy groups up to z~1 with the largest unbiased sample available to date.

WFPC2 11229

SEEDS: The Search for Evolution of Emission from Dust in Supernovae with HST and

The role that massive stars play in the dust content of the Universe is extremely uncertain. It has long been hypothesized that dust can condense within the ejecta of supernovae {SNe}, however there is a frustrating discrepancy between the amounts of dust found in the early Universe, or predicted by nucleation theory, and inferred from SN observations. Our SEEDS collaboration has been carefully revisiting the observational case for dust formation by core-collapse SNe, in order to quantify their role as dust contributors in the early Universe. As dust condenses in expanding SN ejecta, it will increase in optical depth, producing three simultaneously observable phenomena: {1} increasing optical extinction; {2} infrared {IR} excesses; and {3} asymmetric blue-shifted emission lines. Our SEEDS collaboration recently reported all three phenomena occurring in SN2003gd, demonstrating the success of our observing strategy, and permitting us to derive a dust mass of up to 0.02 solar masses created in the SN.  To advance our understanding of the origin and evolution of the interstellar dust in galaxies, we propose to use HST’s WFPC2 and NICMOS instruments plus Spitzer’s photometric instruments to monitor ten recent core- collapse SNe for dust formation and, as a bonus, detect light echoes that can affect the dust mass estimates. These space-borne observations will be supplemented by ground- based spectroscopic monitoring of their optical emission line profiles. These observations would continue our 2-year HST and Spitzer monitoring of this phenomena in order to address two key questions: do all SNe produce dust? and How much dust do they produce? As all the SN are witin 15 Mpc, each SN stands an excellent chance of detection with HST and Spitzer and of resolving potential light echoes.

FGS 11211

An Astrometric Calibration of Population II Distance Indicators

In 2002 HST produced a highly precise parallax for RR Lyrae. That measurement resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a useful result, judged by the over ten refereed citations each year since. It is, however, unsatisfactory to have the direct, parallax-based, distance scale of Population II variables based on a single star. We propose, therefore, to obtain the parallaxes of four additional RR Lyrae stars and two Population II Cepheids, or W Vir stars. The Population II Cepheids lie with the RR Lyrae stars on a common K-band Period-Luminosity relation. Using these parallaxes to inform that relationship, we anticipate a zero-point error of 0.04 magnitude. This result should greatly strengthen confidence in the Population II distance scale and increase our understanding of RR Lyrae star and Pop II Cepheid astrophysics.

FGS 11210

The Architecture of Exoplanetary Systems

Are all planetary systems coplanar? Concordance cosmogony makes that prediction. It is, however, a prediction of extrasolar planetary system architecture as yet untested by direct observation for main sequence stars other than the Sun. To provide such a test, we propose to carry out FGS astrometric studies on four stars hosting seven companions. Our understanding of the planet formation process will grow as we match not only system architecture, but formed planet mass and true distance from the primary with host star characteristics for a wide variety of host stars and exoplanet masses. We propose that a series of FGS astrometric observations with demonstrated 1 millisecond of arc per- observation precision can establish the degree of coplanarity and component true masses for four extrasolar systems: HD 202206 {brown dwarf+planet}; HD 128311 {planet+planet}, HD 160691 = mu Arae {planet+planet}, and HD 222404AB = gamma Cephei {planet+star}.  In each case the companion is identified as such by assuming that the minimum mass is the actual mass. For the last target, a known stellar binary system, the companion orbit is stable only if coplanar with the AB binary orbit.

WFPC2 11202

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

The structure, formation and evolution of early-type galaxies is still largely an open problem in cosmology: how does the Universe evolve from large linear scales dominated by dark matter to the highly non-linear scales of galaxies, where baryons and dark matter both play important, interacting, roles? To understand the complex physical processes involved in their formation scenario, and why they have the tight scaling relations that we observe today {e.g. the Fundamental Plane}, it is critically important not only to understand their stellar structure, but also their dark-matter distribution from the smallest to the largest scales. Over the last three years the SLACS collaboration has developed a toolbox to tackle these issues in a unique and encompassing way by combining new non-parametric strong lensing techniques, stellar dynamics, and most recently weak gravitational lensing, with high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic data of early-type lens systems. This allows us to break degeneracies that are inherent to each of these techniques separately and probe the mass structure of early-type galaxies from 0.1 to 100 effective radii. The large dynamic range to which lensing is sensitive allows us both to probe the clumpy substructure of these galaxies, as well as their low-density outer haloes. These methods have convincingly been demonstrated, by our team, using smaller pilot- samples of SLACS lens systems with HST data. In this proposal, we request observing time with WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain complete multi-color imaging for each system. This would bring the total number of SLACS lens systems to 87 with completed HST imaging and effectively doubles the known number of galaxy-scale strong lenses. The deep HST images enable us to fully exploit our new techniques, beat down low-number statistics, and probe the structure and evolution of early-type galaxies, not only with a uniform data-set an order of magnitude larger than what is available now, but also with a fully coherent and self-consistent methodological approach!

WFPC2 11178

Probing Solar System History with Orbits, Masses, and Colors of Transneptunian Binaries

The recent discovery of numerous transneptunian binaries {TNBs} opens a window into dynamical conditions in the protoplanetary disk where they formed as well as the history of subsequent events which sculpted the outer Solar System and emplaced them onto their present day heliocentric orbits. To date, at least 47 TNBs have been discovered, but only about a dozen have had their mutual orbits and separate colors determined, frustrating their use to investigate numerous important scientific questions. The current shortage of data especially cripples scientific investigations requiring statistical comparisons among the ensemble characteristics. We propose to obtain sufficient astrometry and photometry of 23 TNBs to compute their mutual orbits and system masses and to determine separate primary and secondary colors, roughly tripling the sample for which this information is known, as well as extending it to include systems of two near-equal size bodies. To make the most efficient possible use of HST, we will use a Monte Carlo technique to optimally schedule our observations.

NIC2 11157

NICMOS Imaging Survey of Dusty Debris Around Nearby Stars Across the Stellar Mass Spectrum

Association of planetary systems with dusty debris disks is now quite secure, and advances in our understanding of planet formation and evolution can be achieved by the identification and characterization of an ensemble of debris disks orbiting a range of central stars with different masses and ages. Imaging debris disks in starlight scattered by dust grains remains technically challenging so that only about a dozen systems have thus far been imaged. A further advance in this field needs an increased number of imaged debris disks. However, the technical challenge of such observations, even with the superb combination of HST and NICMOS, requires the best targets. Recent HST imaging investigations of debris disks were sample-limited not limited by the technology used. We performed a search for debris disks from a IRAS/Hipparcos cross correlation which involved an exhaustive background contamination check to weed out false excess stars. Out of ~140 identified debris disks, we selected 22 best targets in terms of dust optical depth and disk angular size. Our target sample represents the best currently available target set in terms of both disk brightness and resolvability. For example, our targets have higher dust optical depth, in general, than newly identified Spitzer disks. Also, our targets cover a wider range of central star ages and masses than previous debris disk surveys. This will help us to investigate planetary system formation and evolution across the stellar mass spectrum. The technical feasibility of this program in two-gyro mode guiding has been proven with on- orbit calibration and science observations during HST cycles 13, 14, and 15.

WFPC2 11156

Monitoring Active Atmospheres on Uranus and Neptune

We propose Snapshot observations of Uranus and Neptune to monitor changes in their atmospheres on time scales of weeks and months. Uranus equinox is only months away, in December 2007. Hubble Space Telescope observations during the past several years {Hammel et al. 2005, Icarus 175, 284 and references therein} have revealed strongly wavelength-dependent latitudinal structure, the presence of numerous visible-wavelength cloud features in the northern hemisphere, at least one very long-lived discrete cloud in the southern hemisphere, and in 2006 the first dark spot ever seen on Uranus. Long-term ground-based observations {Lockwood and Jerzekiewicz, 2006, Icarus 180, 442; Hammel and Lockwood 2007, Icarus 186, 291} reveal seasonal brightness changes whose origins are not well understood. Recent near-IR images of Neptune obtained using adaptive optics on the Keck Telescope, together with HST observations {Sromovsky et al. 2003, Icarus 163, 256 and references therein} which include previous Snapshot programs {GO 8634, 10170, 10534} show a general increase in activity at south temperate latitudes until 2004, when Neptune returned to a rather Voyager-like appearance. Further Snapshot observations of these two dynamic planets will elucidate the nature of long-term changes in their zonal atmospheric bands and clarify the processes of formation, evolution, and dissipation of discrete albedo features.

WFPC2 11100

Two new `bullets’ for MOND: revealing the properties of dark matter in massive merging clusters

The principal objective of this proposal is to study the physical nature of dark matter by using two, massive, newly-identified merging clusters of galaxies. As shown by the pioneering example of the “bullet cluster” {1E0657-56}, such systems are ideal laboratories for detecting dark matter and distinguishing between cold dark matter {CDM} and other scenarios {e.g. self-interacting dark matter}. Our limit on the self-interaction cross-section of dark matter relies on the assumption of a normal pre-merger mass-to-light ratios, and a small impact parameter during the collision of the two clusters. In order to mitigate any possible systematic effects, it is vital to extend this work to other, similar systems. With detailed observations of new systems, the systematic uncertainties in the dark matter cross section calculations can be improved substantially, allowing us to move from rough order of magnitude estimates to measurements with quantifiable uncertainties that can be compared usefully with the predictions from numerical simulations. Our targets are two extraordinary, high-redshift, merging galaxy clusters recently discovered by the Massive Cluster Survey {MACS}. This survey is by far the best matched to this study, since it selects medium redshift {optimal for gravitational lensing studies} and X-ray luminous {hence massive} objects. We have selected the best candidates with clear evidence for considerable offsets between the hot X-ray emitting gas and optically luminous stellar material. The two most striking examples are the targets of this proposal. To pin down the position of the dark matter component we require high resolution, absolutely calibrated mass maps. The combination of weak and strong lensing measurements is needed to attain this goal. This can only be achieved with the excellent resolving power of the HST {in combination with wide-field, multicolor Subaru data already in hand}. We therefore request multicolor HST/WFPC2 observations of the two merging clusters. The combination of constraints from multiply lensed images {identified via morphology and color information} and high-resolution weak lensing data will allow us to construct, self-consistently, their mass distribution from the very centers to the outskirts. Gravitational lensing thus provides a unique tool transforming these clusters into dark matter laboratories. They will supply us with answers as to the nature and properties of dark matter, and how it shapes galaxies and galaxy clusters and their evolution through cosmic time. NIC1 11057

Cycle 15 NICMOS dark current, shading profile, and read noise monitoring program

The purpose of this proposal is to monitor the dark current, read noise, and shading profile for all three NICMOS detectors throughout the duration of Cycle 15. This proposal is a slightly modified version of proposal 10380 of cycle 13 and 9993 of cycle12 and is the same as Cycle 14. that we cut down some exposure time to make the observation fit within 24 orbits.

WFPC2 11030

WFPC2 WF4 Temperature Reduction #3

In the fall of 2005, a serious anomaly was found in images from the WF4 CCD in WFPC2. The WF4 CCD bias level appeared to have become unstable, resulting in sporadic images with either low or zero bias level. The severity and frequency of the problem was rapidly increasing, making it possible that WF4 would soon become unusable if no work-around were found. Examination of bias levels during periods with frequent WFPC2 images showed low and zero bias episodes every 4 to 6 hours. This periodicity is driven by cycling of the WFPC2 Replacement Heater, with the bias anomalies occurring at the temperature peaks. The other three CCDs {PC1, WF2, and WF3} appear to be unaffected and continue to operate properly. Lowering the Replacement Heater temperature set points by a few degrees C effectively eliminates the WF4 anomaly. On 9 January 2006, the upper set point of the WFPC2 Replacement Heater was reduced from 14.9C to 12.2C. On 20 February 2006, the upper set point was reduced from 12.2C to 11.3C, and the lower set point was reduced from 10.9C to 10.0C. These changes restored the WF4 CCD bias level; however, the bias level has begun to trend downwards again, mimicking its behavior in late 2004 and early 2005. A third temperature reduction is planned for March 2007. We will reduce the upper set point of the heater from 11.3C to 10.4C and the lower set point from 10.0C to 9.1C. The observations described in this proposal will test the performance of WFPC2 before and after this temperature reduction. Additional temperature reductions may be needed in the future, depending on the performance of WF4. Orbits: internal 26, external 1

NIC1 10889

The Nature of the Halos and Thick Disks of Spiral Galaxies

We propose to resolve the extra-planar stellar populations of the thick disks and halos of seven nearby, massive, edge-on galaxies using ACS, NICMOS, and WFPC2 in parallel. These observations will provide accurate star counts and color-magnitude diagrams 1.5 magnitudes below the tip of the Red Giant Branch sampled along the two principal axes and one intermediate axis of each galaxy. We will measure the metallicity distribution functions and stellar density profiles from star counts down to very low average surface brightness’s, equivalent to ~32 V-mag per square arcsec. These observations will provide the definitive HST study of extra-planar stellar populations of spiral galaxies. Our targets cover a range in galaxy mass, luminosity, and morphology and as function of these galaxy properties we will provide: – The first systematic study of the radial and isophotal shapes of the diffuse stellar halos of spiral galaxies – The most detailed comparative study to date of thick disk morphologies and stellar populations – A comprehensive analysis of halo and thick disk metallicity distributions as a function of galaxy type and position within the galaxy. – A sensitive search for tidal streams – The first opportunity to directly relate globular cluster systems to their field stellar population We will use these fossil records of the galaxy assembly process preserved in the old stellar populations to test halo and thick disk formation models within the hierarchical galaxy formation scheme. We will test LambdaCDM predictions on sub-galactic scales, where it is difficult to test using CMB and galaxy redshift surveys, and where it faces its most serious difficulties.

WFPC2 10884

The Dynamical Structure of Ellipticals in the Coma and Abell 262 Clusters

We propose to obtain images of 13 relatively luminous early type galaxies in the Coma cluster and Abell 262 for which we have already collected ground based major and minor axis spectra and images. The higher resolution HST images will enable us to study the central regions of these galaxies which is crucial to our dynamical modeling. The complete data set will allow us to perform a full dynamical analysis and to derive the dark matter content and distribution, the stellar orbital structure, and the stellar population properties of these objects, probing the predictions of galaxy formation models.  The dynamical analysis will be performed using an up-to-date axi-symmetric orbit superposition code.

NIC2 10852

Coronagraphic Polarimetry with NICMOS: Dust grain evolution in T Tauri stars

The formation of planetary systems is intimately linked to the dust population in circumstellar disks, thus understanding dust grain evolution is essential to advancing our understanding of how planets form. By combining {1} the coronagraphic polarimetry capabilities of NICMOS, {2} powerful 3-D radiative transfer codes, and {3} observations of objects known to span the Class II-III stellar evolutionary phases, we will gain crucial insight into dust grain growth. By observing objects representative of a known evolutionary sequence of YSOs, we will be able to investigate how the dust population evolves in size and distribution during the crucial transition from a star+disk system to a system containing planetesimals. When combine with our previous study on dust grain evolution in the Class I-II phase, the proposed study will help to establish the fundamental time scales for the depletion of ISM-like grains: the first step in understanding the transformation from small submicron sized dust grains, to large millimeter sized grains, and untimely to planetary bodies.

WFPC2 10841

A Proper Motion Search for Intermediate Mass Black Holes in Globular Clusters {2nd Epoch Observations}

Establishing the presence or absence of intermediate-mass black holes {IMBH} in globular clusters is crucial for understanding the evolution of dense stellar systems. Observationally, this search has been hampered by the low number of stars with known velocities in the central few arcseconds. This limits our knowledge of the velocity dispersion in the region where the gravitational influence of any IMBH would be felt. In Cycle 13, we successfully obtained ACS/HRC images of the centers of five carefully chosen Galactic globular clusters {GO-10401} for a new proper motion study. Although the science case was approved and the first epoch images obtained, the requested future cycle observations were not granted {due to a general policy decision based on the strong uncertainties at the time concerning the immediate future of HST}. We have now assessed the quality of the first epoch observations. The HRC resolution reveals many isolated stars in to the very center of each cluster that remained blended or unresolved in previous WFPC2 data. Given a two year baseline, we are confident that we can achieve the proper motion precision required to place strict limits on the presence of an IMBH. Therefore, we request the second-epoch, follow-up observations to GO-10401 in order to measure the proper motions of stars in our target clusters. These velocity measurements will allow us to: {i} place constraints on the mass of a central black hole in each cluster; {ii} derive the internal velocity dispersion as a function of cluster radius; {iii} verify or reject previous reports of cluster rotation; and {iv} directly measure velocity anisotropy as a function of radius. If no second epoch data are obtained then the observing time already invested in the first epoch will have been wasted.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

#10939 REACQ(1,3,3) failed.

Upon acquisition of signal at 223/15:29:24 HST was in gyro control with QF1STOPF and QSTOP flags set. REACQ(1,3,3) at 223/15:08:46 failed to RGA control. At acquisition of signal vehicle had OBAD RSS error of 2.46 arcseconds. Initial GSCAQ(1,3,3) at 13:32:51 and subsequent REACQ(1,3,3) at 16:44:42 were successful.

#10940 REacq(1,2,1) failed to RGA control.

REacq(1,2,1) scheduled at 224/02:39:00 failed at 02:42:09 due to scan step limit exceeded on FGS 1. OBAD1 showed errors of V1=7.41, V2=423.15, V3=17.34, RSS=423.57. OBAD2 showed errors of V1=-35.71, V2=-21.75, V3=-36.81, RSS=55.70.

COMPLETED OPS REQUEST: (None)

                               SCHEDULED SUCCESSFUL 

FGS GSacq                      16              16 
FGS REacq                      26              24 
OBAD with Maneuver             84              84 

COMPLETED OPS NOTES: (None)

SIGNIFICANT EVENTS: (None

SpaceRef staff editor.