NASA Hubble Space Telescope Daily Report #4316
HUBBLE SPACE TELESCOPE DAILY REPORT # 4316
– Continuing to collect World Class Science
PERIOD COVERED: UT March 09,10,11, 2007 (DOY 068,069,070)
OBSERVATIONS SCHEDULED
NIC1/NIC2/NIC3 8794
NICMOS Post-SAA calibration – CR Persistence Part 5
A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non- standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=3Ddate/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.
WFPC2 11083
The Structure, Formation and Evolution of Galactic Cores and Nuclei
A surprising result has emerged from the ACS Virgo Cluster Survey {ACSVCS}, a program to obtain ACS/WFC gz imaging for a large, unbiased sample of 100 early-type galaxies in the Virgo Cluster. On subarcsecond scales {i.e., <0.1"-1"}, the HST brightness profiles vary systematically from the brightest giants {which have nearly constant surface brightness cores} to the faintest dwarfs {which have compact stellar nuclei}. Remarkably, the fraction of galaxy mass contributed by the nuclei in the faint galaxies is identical to that contributed by supermassive black holes in the bright galaxies {0.2%}. These findings strongly suggest that a single mechanism is responsible for both types of Central Massive Object: most likely internally or externally modulated gas inflows that feed central black holes or lead to the formation of "nuclear star clusters". Understanding the history of gas accretion, star formation and chemical enrichment on subarcsecond scales has thus emerged as the single most pressing question in the study of nearby galactic nuclei, either active or quiescent. We propose an ambitious HST program {199 orbits} that constitutes the next, obvious step forward: high-resolution, ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W} imaging for the complete ACSVCS sample. By capitalizing on HST's unique ability to provide high-resolution images with a sharp and stable PSF at UV and IR wavelengths, we will leverage the existing optical HST data to obtain the most complete picture currently possible for the history of star formation and chemical enrichment on these small scales. Equally important, this program will lead to a significant improvement in the measured structural parameters and density distributions for the stellar nuclei and the underlying galaxies, and provide a sensitive measure of "frosting" by young stars in the galaxy cores. By virtue of its superb image quality and stable PSF, NICMOS is the sole instrument capable of the IR observations proposed here. In the case of the WFPC2 observations, high-resolution UV imaging {< 0.1"} is a capability unique to HST, yet one that could be lost at any any time.
NIC3 11080
Exploring the Scaling Laws of Star Formation
As a variety of surveys of the local and distant Universe are approaching a full census of galaxy populations, our attention needs to turn towards understanding and quantifying the physical mechanisms that trigger and regulate the large-scale star formation rates {SFRs} in galaxies.
NIC3 11064
CYCLE 15 NICMOS SPECTROPHOTOMETRY CALIBRATION PROGRAM
Now that the spectrophotometric capabilities of the NICMOS grism have been established, cycle 15 observations are needed to refine the sensitivity estimates, to check for sensitivity loss with time, to improve the accuracy of the linearity correction, to improve the secondary flux standards by re-observation, and to expand the G206 data set now that the sky subtraction technique has been shown to produce useful fluxes for some of the fainter secondary standards. These faint secondary IR standards will be a significant step towards establishing flux standards for JWST, as well as for SNAP, Spitzer, and SOFIA. 1.Re- observe the 3 primary WDs GD71, G191B2b, & GD153 twice each, once at the beginning and once near the end of the 18 month cycle. To date, we have only 2 observation of each star, while the corresponding STIS data set for these primary standards ranges from 6 to 23 obs. No observations exist for GD71 or GD153 with G206, so that the current G206 sensitivity is defined solely by G191B2B. Purposes: Refine sensitivities, measure sens losses. Orbits: 2 for each of 6 visits =3D 12 2. Re-observe WD1057 = & WD1657 plus another P041C lamp-on visit to improve the scatter in the non-lin measurements per Fig. 8 of NIC ISR 2006-02. The WD stars require 2 orbits each, while the lamp-on test is done in one. The very faintest and most crucial standard WD1657 has 2 good visits already, so to substantially improve the S/N, two visits of two orbits are needed. Include G206 for P041C in the lamp-off baseline part of that orbit. Orbits: WD1057-2, WD1657-4, P041C-1 –> 7 3. Re-observe 9 secondary standards to improve S/N of the faint ones and to include G206 for all 9. BD+17 {3 obs} is not repeated in this cycle. Four are bright enough to do in one orbit: VB8, 2M0036+18, P330E, and P177D. Orbits:2*5+4=3D14 Grand Total orbits over 18 month cycle 15 is 12+6+14=3D32 {Roelof will submit the P041C lamp-on visit in a separate program.}
NIC1 11057
Cycle 15 NICMOS dark current, shading profile, and read noise monitoring program
The purpose of this proposal is to monitor the dark current, read noise, and shading profile for all three NICMOS detectors throughout the duration of Cycle 15. This proposal is a slightly modified version of proposal 10380 of cycle 13 and 9993 of cycle12 and is the same as Cycle 14. that we cut down some exposure time to make the observation fit within 24 orbits.
FGS 10989
Astrometric Masses of Extrasolar Planets and Brown Dwarfs
We propose observations with HST/FGS to estimate the astrometric elements {perturbation orbit semi-major axis and inclination} of extra-solar planets orbiting six stars. These companions were originally detected by radial velocity techniques. We have demonstrated that FGS astrometry of even a short segment of reflex motion, when combined with extensive radial velocity information, can yield useful inclination information {McArthur et al. 2004}, allowing us to determine companion masses. Extrasolar planet masses assist in two ongoing research frontiers. First, they provide useful boundary conditions for models of planetary formation and evolution of planetary systems. Second, knowing that a star in fact has a plantary mass companion, increases the value of that system to future extrasolar planet observation missions such as SIM PlanetQuest, TPF, and GAIA.
ACS/SBC 10862
Comprehensive Auroral Imaging of Jupiter and Saturn during the International Heliophysical Year
A comprehensive set of observations of the auroral emissions from Jupiter and Saturn is proposed for the International Heliophysical Year in 2007, a unique period of especially concentrated measurements of space physics phenomena throughout the solar system. We propose to determine the physical relationship of the various auroral processes at Jupiter and Saturn with conditions in the solar wind at each planet. This can be accomplished with campaigns of observations, with a sampling interval not to exceed one day, covering at least one solar rotation. The solar wind plasma density approaching Jupiter will be measured by the New Horizons spacecraft, and a separate campaign near opposition in May 2007 will determine the effect of large-scale variations in the interplanetary magnetic field {IMF} on the Jovian aurora by extrapolation from near-Earth solar wind measurements. A similar Saturn campaign near opposition in Jan. 2007 will combine extrapolated solar wind data with measurements from a wide range of locations within the Saturn magnetosphere by Cassini. In the course of making these observations, it will be possible to fully map the auroral footprints of Io and the other satellites to determine both the local magnetic field geometry and the controlling factors in the electromagnetic interaction of each satellite with the corotating magnetic field and plasma density. Also in the course of making these observations, the auroral emission properties will be compared with the properties of the near-IR ionospheric emissions {from ground-based observations} and non thermal radio emissions, from ground-based observations for Jupiter?s decametric radiation and Cassini plasma wave measurements of the Saturn Kilometric Radiation {SKR}.
NIC2 10847
Coronagraphic Polarimetry of HST-Resolved Debris Disks
We propose to take full advantage of the recently commissioned coronagraphic polarimetry modes of ACS and NICMOS to obtain imaging polarimetry of circumstellar debris disks that were imaged previously by the HST coronagraphs, but without the polarizers. It is well established that stars form in gas-rich protostellar disks, and that the planets of our solar system formed from a circum-solar disk. However, the connection between the circumstellar disks that we observe around other stars and the processes of planet formation is still very uncertain. Mid-IR spectral studies have suggested that disk grains are growing in the environments of young stellar objects during the putative planet-formation epoch. Furthermore, structures revealed in well resolved images of circumstellar disks suggest gravitational influences on the disks from co-orbital bodies of planetary mass. Unfortunately, existing imaging data provides only rudimentary information abou the disk grains and their environments. Our proposed observations, which can be obtained only with HST, will enable us to quantitatively determine the sizes of the grains and optical depths as functions of their location within the disks {i.e., detailed tomography}. Armed with these well-determine physical and geometrical systemic parameters, we will develop a set of self- consistent models of disk structures to investigate possible interactions between unseen planets and the disks from which they formed. Our results will also calibrate models of the thermal emission from these disks, that will in turn enable us to infer the properties of other debris disks that cannot be spatially resolved with current or planned instruments and telescopes.
NIC3 10836
The Red Sequence at 1.3 < z < 1.4 in Galaxy Clusters
We propose to obtain NIC3/F160W imaging of three new IRAC-selected galaxy clusters at 1.3 < z < 1.5. In combination with deep ACS/F850LP images being obtained in Cycle 14, the resulting precision photometry in a rest ~U - R color will allow us to construct color- magnitude diagrams which can be used to measure the slope and scatter in the red sequence galaxies, thereby constraining the history of star formation in the early-type galaxies. The number of morphologically-selected early-type galaxies more luminous than L* will allow us to test the predictions of the hierarchical merging scenario for galaxy formation in clusters at the highest available redshifts in galaxy clusters.
WFPC2 10807
The knotty jet of He 2-90: An ideal laboratory for studying the formation and propagation of jets in dying stars
Previous WFPC2 observations have led to the serendipitous discovery of an extended, highly-collimated, “pulsed” bipolar jet emanating from a compact planetary nebula, He 2- 90. Subsequently, an average proper motion of the knots in the jet was measured, which together with radial velocities, enabled us to characterise the basic physical properties of the jet. The knotty jet in He 2-90 resembles other prominent examples of pulsed jets in young stellar objects or symbiotic stars, but is probably by far the best example yet of a non-relativistic, symmetric, jet in a “clean” astrophysical environment. The formation {acceleration and collimation} of jets is not fully understood, specially in the case of jets in dying stars. We now propose to re-image He 2-90 with WFPC2 and exploit the factor 3.5 longer time baseline now available from the first-epoch observations in September 1999, in order to measure the proper motion of individual knots in the jet with unprecedented accuracy. These data will enable us to characterise the ejection history of the source, specially deviations from a constant period {latter is related to the binary period of the system}, e.g., due to instabilities in the accretion mechanism. We will also be able to test if the ejection mechanism is symmetric: any deviation in the ejection history of the knots in the opposing jet beams, will indicate a magnetic field structure and/or the accretion disk which is not symmetric across the equatorial plane. We will also carry out deep imaging with the ACS/WFC camera in order to determine the shapes/sizes of a large number of knots. The shapes/sizes of the knots, and changes with distance from the source probe the strength of the magnetic field inside the jet. HRC imaging of the central source and jet on sub-arcsecond scales will be carried out to probe the magnetic field close to the jet source, and deviations from linearity in the jet-beam which may result from instabilities in the magnetic field. These data will allow us to significantly improve our existing 2- dimensional MHD model of the He2-90 jet, and/or provide impetus for new 3-dimensional models.
NIC2 10802
SHOES-Supernovae, HO, for the Equation of State of Dark energy
The present uncertainty in the value of the Hubble constant {resulting in an uncertainty in Omega_M} and the paucity of Type Ia supernovae at redshifts exceeding 1 are now the leading obstacles to determining the nature of dark energy. We propose a single, integrated set of observations for Cycle 15 that will provide a 40% improvement in constraints on dark energy. This program will observe known Cepheids in six reliable hosts of Type Ia supernovae with NICMOS, reducing the uncertainty in H_0 by a factor of two because of the smaller dispersion along the instability strip, the diminished extinction, and the weaker metallicity dependence in the infrared. In parallel with ACS, at the same time the NICMOS observations are underway, we will discover and follow a sample of Type Ia supernovae at z > 1. Together, these measurements, along with prior constraints from WMAP, will provide a great improvement in HST’s ability to distinguish between a static, cosmological constant and dynamical dark energy. The Hubble Space Telescope is the only instrument in the world that can make these IR measurements of Cepheids beyond the Local Group, and it is the only telescope in the world that can be used to find and follow supernovae at z > 1. Our program exploits both of these unique capabilities of HST to learn more about one of the greatest mysteries in science.
NIC3 10792
Quasars at Redshift z=3D6 and Early Star Formation History
We propose to observe four high-redshift quasars {z=3D6} in the NIR in order to estimate relative Fe/Mg abundances and the central black hole mass. The results of this study will critically constrain models of joint quasar and galaxy formation, early star formation, and the growth of supermassive black holes. Different time scales and yields for alpha-elements {like O or Mg} and for iron result into an iron enrichment delay of ~0.3 to 0.6 Gyr. Hence, despite the well-known complexity of the FeII emission line spectrum, the ratio iron/alpha – element is a potentially useful cosmological clock. The central black hole mass will be estimated based on a recently revised back hole mass – luminosity relationship. The time delay of the iron enrichment and the time required to form a supermassive black hole {logM>8 Msol, tau ~0.5Gyr} as evidenced by quasar activity will be used to date the beginning of the first intense star formation, marking the formation of the first massive galaxies that host luminous quasars, and to constrain the epoch when supermassive black holes start to grow by accretion.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS:
10733 – GSAcq (1,3,1) failed with STOP flag for FGS 1 During LOS the GSAcq scheduled at 23:03:48 failed. At AOS the OBAD RSS was 3.16 a-s.
10734 – GSAcq(2,1,1) failed to RGA Hold (Gyro Control) GSAcq(2,1,1) scheduled at 069/21:17:24 – 21:25:29 failed to RGA Hold due to (QF2STOPF) stop flag indication on FGS2. Pre-acq OBADs showed (RSS) attitude correction values of 3247.82 and 10.97 arcseconds.
10736 – GSAcq(2,3,2) results in fine lock backup (2,0,2) Upon acquisition of signal at 070/12:00:34, the GSAcq(2,3,2) scheduled at 070/11:26:49 – 11:34:54 had resulted in fine lock backup (2,0,2) using FGS2 due to (QF3STOPF) stop flag indication on the secondary FGS3. Post-acq OBAD/MAP showed (RSS) value of 8.75.
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL FGS GSacq 31 29 FGS REacq 11 10 OBAD with Maneuver 84 84
SIGNIFICANT EVENTS: (None)