Status Report

NASA Hubble Space Telescope Daily Report #4242

By SpaceRef Editor
November 17, 2006
Filed under , ,
NASA Hubble Space Telescope Daily Report #4242
http://images.spaceref.com/news/hubble.3.jpg

HUBBLE SPACE TELESCOPE DAILY REPORT # 4242

– Continuing to collect World Class Science

PERIOD COVERED: UT November 16, 2006 (DOY 320)

OBSERVATIONS SCHEDULED

ACS/HRC 10833

Host Galaxies of Reverberation Mapped AGNs

We propose to obtain unsaturated high-resolution images of 17 reverberation-mapped active galactic nuclei in order to remove the point-like nuclear light from each image, thus yielding a “nucleus-free” image of the host galaxy. This will allow investigation of host galaxy properties: our particular interest is determination of the host-galaxy starlight contribution to the reverberation-mapping observations. This is necessary {1} for accurate determination of the relationship between the AGN nuclear continuum flux and the size of the broad Balmer-line emitting regions of AGNs, which is important in estimating black hole masses for large samples of QSOs, and {2} for accurate determination of the bolometric luminosity of the AGN proper. Through observations in Cycles 12 and 14, we have obtained or will obtain images of 18 of the 35 objects in the reverberation-mapping compilation of Peterson et al. {2004}. These observations revealed that the host-galaxy contribution, even in the higher-luminosity AGNs, is higher than expected and that all of the reverberation-mapped AGNs will have to be observed, not just the lower-luminosity sources; each source is different, and each source is important. Therefore we request time to observe the 17 remaining reverberation-mapped AGNs.

ACS/HRC 10860

The largest Kuiper belt object

The past year has seen an explosion in the discoveries of Pluto-sized objects in the Kuiper belt. With the discoveries of the methane-covered 2003 UB313 and 2005 FY9, the multiple satellite system of 2003 EL61, and the Pluto-Charon analog system of Orcus and its satellite, it is finally apparent that Pluto is not a unique oddball at the edge of the solar system, but rather one of a family of similarly large objects in the Kuiper belt and beyond. HST observations over the past decade have been critical for understanding the interior, surface, and atmosphere of Pluto and Charon. We propose here a comprehensive series of observations designed to similarly expand our knowledge of these recently discovered Pluto-sized and near-Pluto-sized Kuiper belt objects. These observations will measure objects’ sizes and densities, explore the outcome of collisions in the outer solar system, and allow the first ever look at the interior structure of a Kuiper belt object. Our wide field survey that discovered all of these objects is nearly finished, so after five years of continuous searching we are finally almost complete in our tally of these near-Pluto-sized objects. This large HST request is the culmination of this half-decade search for new planetary-sized objects. As has been demonstrated repeatedly by the approximately 100 previous orbits devoted to the study of Pluto, only HST has the resolution and sensitivity for detailed study of these distant objects.

ACS/WFC 10633

GRB afterglows and host galaxies at very high redshifts

Cosmology is beginning to constrain the nature of the earliest stars and galaxies to form in the universe, but direct observation of galaxies at z>6 remains highly challenging due to their scarcity, intrinsically small size, and high luminosity distance. GRB afterglows, thanks to their extreme luminosities, offer the possibility of circumventing these normal constraints by providing redshifts and spectral information which couldn’t be obtained by direct observation of the hosts themselves. In addition, the association of GRBs with massive stars means that they are a tracer of star formation, and that their hosts are likely responsible for a large proportion of the ionizing radiation during that era. Our collaboration is mounting a campaign to rapidly identify and study candidate very high redshift bursts, bringing to bear a network of 2, 4 and 8m telescopes with nIR instrumentation. The capabilities of Swift to detect faint, distant GRBs, and to report accurate positions for many bursts in near real-time makes our program now feasible. HST is crucial to this endeavour, allowing us {a} to monitor the late time afterglows and hence compare them to lower-z bursts and test the use of GRBs as standard candles; and {b} characterise the basic properties, luminosities, and in some cases morphologies, of the hosts, which is essential to understanding these primordial galaxies and their relationship to other populations.

ACS/WFC 10875

A Snapshot Survey of The Most Massive Clusters of Galaxies

We propose the continuation of our highly successful Cycle14 snapshot survey of a sample of 123 very X-ray luminous clusters in the redshift range 0.3-0.7. As demonstrated by the 21 snapshots obtained so far in Cycle14 these systems frequently exhibit strong gravitational lensing as well as spectacular examples of violent galaxy evolution. The proposed observations will provide important constraints on the cluster mass distributions, the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. Acknowledging the broad community interest in this sample we waive our data rights for these observations.

FGS 10611

Precise Distances to Nearby Planetary Nebulae

We propose to carry out astrometry with the FGS to obtain accurate and precise distances to four nearby planetary nebulae. In 1992, Cahn et al. noted that “The distances to Galactic planetary nebulae remain a serious, if not THE most serious, problem in the field, despite decades of study.” Twelve years later, the same statement still applies. Because the distances to planetary nebulae are so uncertain, our understanding of their masses, luminosities, scale height, birth rate, and evolutionary state is severely limited. To help remedy this problem, HST astrometry can guarantee parallaxes with half the error of any other available approach. These data, when combined with parallax measurements from the USNO, will improve distance measurements by more than a factor of two, producing more accurate distances with uncertainties that are of the order of ~6%. Lastly, most planetary nebula distance scales in the literature are statistical. They require several anchor points of known distance in order to calibrate their zero point. Our program will provide “gold standard” anchor points by the end of 2006, a decade before any anticipated results from future space astrometry missions.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration – CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC2, ACS/WFC 10802

SHOES-Supernovae, HO, for the Equation of State of Dark energy

The present uncertainty in the value of the Hubble constant {resulting in an uncertainty in Omega_M} and the paucity of Type Ia supernovae at redshifts exceeding 1 are now the leading obstacles to determining the nature of dark energy. We propose a single, integrated set of observations for Cycle 15 that will provide a 40% improvement in constraints on dark energy. This program will observe known Cepheids in six reliable hosts of Type Ia supernovae with NICMOS, reducing the uncertainty in H_0 by a factor of two because of the smaller dispersion along the instability strip, the diminished extinction, and the weaker metallicity dependence in the infrared. In parallel with ACS, at the same time the NICMOS observations are underway, we will discover and follow a sample of Type Ia supernovae at z > 1. Together, these measurements, along with prior constraints from WMAP, will provide a great improvement in HST’s ability to distinguish between a static, cosmological constant and dynamical dark energy. The Hubble Space Telescope is the only instrument in the world that can make these IR measurements of Cepheids beyond the Local Group, and it is the only telescope in the world that can be used to find and follow supernovae at z > 1. Our program exploits both of these unique capabilities of HST to learn more about one of the greatest mysteries in science.

WFPC2 10915

ACS Nearby Galaxy Survey

Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST’s lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to ~3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to ~1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR~10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for ~100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

10517 – GSAcq (2,1,2) failed due to Scan Step Limit Exceeded on FGS 2 At AOS (320/15:47:55) observed GSAcq (2,1,2) scheduled 320/15:17:54-15:25:16 had failed to RGA control due to Scan Step Limit Exceeded on FGS 2. Pre-Acq OBAD’s unavailable due to LOS. Post-Acq OBAD MAP RSS value = 11.98 a-s.

At 320/16:56:01 REAcq (2,1,2) scheduled from 320/16:53:01-17:00:23 failed to RGA control due to Scan Step Limit Exceeded on FGS 2. Pre-REAcq OBAD #1 unavailable due to LOS. OBAD #2 RSS value = 6.00 a-s. OBAD MAP RSS value = 13.77 a-s.

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                          SCHEDULED      SUCCESSFUL
FGS GSacq               09                      08
FGS REacq               06                      05
OBAD with Maneuver  32                      32

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.