Status Report

NASA Hubble Space Telescope Daily Report #4235

By SpaceRef Editor
November 7, 2006
Filed under , ,
NASA Hubble Space Telescope Daily Report #4235
http://images.spaceref.com/news/hubble.jpg

HUBBLE SPACE TELESCOPE DAILY REPORT # 4235

– Continuing to collect World Class Science

PERIOD COVERED: UT November 06, 2006 (DOY 310)

OBSERVATIONS SCHEDULED

ACS/HRC/WFC 10733

CCD Hot Pixel Annealing

Hot pixel annealing will continue to be performed once every 4 weeks. The CCD TECs will be turned off and heaters will be activated to bring the detector temperatures to about +20C. This state will be held for approximately 6 hours, after which the heaters are turned off, the TECs turned on, and the CCDs returned to normal operating condition. To assess the effectiveness of the annealing, a bias and four dark images will be taken before and after the annealing procedure for both WFC and HRC. The HRC darks are taken in parallel with the WFC darks. The charge transfer efficiency {CTE} of the ACS CCD detectors declines as damage due to on-orbit radiation exposure accumulates. This degradation has been closely monitored at regular intervals, because it is likely to determine the useful lifetime of the CCDs. We combine the annealling activity with the charge transfer efficiency monitoring and also merge into the routine dark image collection. To this end, the CTE monitoring exposures have been moved into this proposal . All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} and First Pixel Response {FPR} data will be obtained over a range of signal levels for both the Wide Field Channel {WFC}, and the High Resolution Channel {HRC}.

ACS/HRC/WFC 10758

ACS CCDs daily monitor

This program consists of a set of basic tests to monitor, the read noise, the development of hot pixels and test for any source of noise in ACS CCD detectors. The files, biases and dark will be used to create reference files for science calibration. This programme will be for the entire lifetime of ACS. Changes from cycle 13:- The default gain for WFC is 2 e-/DN. As before bias frames will be collected for both gain 1 and gain 2. Dark frames are acquired using the default gain {2}. This program cover the period May, 31 2006- Oct, 1-2006. The first half of the program has a different proposal number: 10729.

ACS/WFC 10824

Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long-term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

ACS/WFC 10875

A Snapshot Survey of The Most Massive Clusters of Galaxies

We propose the continuation of our highly successful Cycle14 snapshot survey of a sample of 123 very X-ray luminous clusters in the redshift range 0.3-0.7. As demonstrated by the 21 snapshots obtained so far in Cycle14 these systems frequently exhibit strong gravitational lensing as well as spectacular examples of violent galaxy evolution. The proposed observations will provide important constraints on the cluster mass distributions, the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. Acknowledging the broad community interest in this sample we waive our data rights for these observations.

ACS/WFC 10880

The host galaxies of QSO2s: AGN feeding and evolution at high luminosities

Now that the presence of supermassive black holes in the nuclei of galaxies is a well established fact, other questions related to the AGN phenomena still have to be answered. Problems of particular interest are how the AGN gets fed, how the black hole evolves and how the evolution of the black hole is related to the evolution of the galaxy bulge. Here we propose to address some of these issues using ACS/WFC + F775W snapshot images of 73 QSO2s with redshifts in the range 0.3

ACS/WFC 10886

The Sloan Lens ACS Survey: Towards 100 New Strong Lenses

As a continuation of the highly successful Sloan Lens ACS {SLACS} Survey for new strong gravitational lenses, we propose one orbit of ACS-WFC F814W imaging for each of 50 high- probability strong galaxy-galaxy lens candidates. These observations will confirm new lens systems and permit immediate and accurate photometry, shape measurement, and mass modeling of the lens galaxies. The lenses delivered by the SLACS Survey all show extended source structure, furnishing more constraints on the projected lens potential than lensed-quasar image positions. In addition, SLACS lenses have lens galaxies that are much brighter than their lensed sources, facilitating detailed photometric and dynamical observation of the former. When confirmed lenses from this proposal are combined with lenses discovered by SLACS in Cycles 13 and 14, we expect the final SLACS lens sample to number 80–100: an approximate doubling of the number of known galaxy-scale strong gravitational lenses and an order-of-magnitude increase in the number of optical Einstein rings. By virtue of its homogeneous selection and sheer size, the SLACS sample will allow an unprecedented exploration of the mass structure of the early-type galaxy population as a function of all other observable quantities. This new sample will be a valuable resource to the astronomical community by enabling qualitatively new strong lensing science, and as such we will waive all but a short {3-month} proprietary period on the observations.

ACS/WFC 10905

The Dynamic State of the Dwarf Galaxy Rich Canes Venatici I Region

With accurate distances, the nearest groups of galaxies can be resolved in 3 dimensions and the radial component of the motions of galaxies due to local density perturbations can be distinquished from cosmological expansion components. Currently, with the ACS, galaxy distances within 8 Mpc can be measured effectively and efficiently by detecting the tip of the red giant branch {TRGB}. Of four principal groups at high galactic latitude in this domain, the Canes Venatici I Group {a} is the least studied, {b} is the most populated, though overwhelmingly by dwarf galaxies, and {c} is likely the least dynamically evolved. It is speculated that galaxies in low mass groups may fail to retain baryons as effectively as those in high mass groups, resulting in significantly higher mass-to-light ratios. The CVn I Group is suspected to lie in the mass regime where the speculated astrophysical processes that affect baryon retention are becoming important.

ACS/WFC/HRC 10920

High-Resolution Imaging of Nearby Lyman Break Galaxy Analogs in the GALEX All-Sky Survey

We have used the ultraviolet all-sky imaging survey currently being conducted by the Galaxy Evolution Explorer {GALEX} to identify for the first time a rare population of low-redshift starbursts with properties remarkably similar to high-redshift Lyman Break Galaxies. These compact UV luminous galaxies {UVLGs} resemble Lyman Break Galaxies in terms of size, UV luminosity, star-formation rate, surface brightness, mass, metallicity, kinematics, dust content, and color. They have characteristic “ages” {stellar mass/SFR} of only a few hundred Myr. This population of galaxies is thus worthy of study in its own right and as a sample of local analogs of Lyman Break Galaxies. We propose to image a sample of the 9 nearest and brightest compact UVLGs in the near-ultraviolet, near-infrared, and H-alpha using ACS. With these images we will 1} characterize their structure and morphology, 2} look for signs of interactions and mergers, 3} investigate the distribution and propogation of star formation over varying time scales, and 4} quantify the stellar populations and star formation history, in order to determine whether a previous generation of stars formed long before the current burst. These data will perfectly complement our existing Spitzer, GALEX, and SDSS data, and will provide important information on star-formation in the present-day universe as well as shed light on the earliest major episodes of star formation in high-redshift galaxies.

ACS/WFC/NIC2 10496

Decelerating and Dustfree: Efficient Dark Energy Studies with Supernovae and Clusters

We propose a novel HST approach to obtain a dramatically more useful “dust free” Type Ia supernovae {SNe Ia} dataset than available with the previous GOODS searches. Moreover, this approach provides a strikingly more efficient search-and-follow-up that is primarily pre- scheduled. The resulting dark energy measurements do not share the major systematic uncertainty at these redshifts, that of the extinction correction with a prior. By targeting massive galaxy clusters at z > 1 we obtain a five-times higher efficiency in detection of Type Ia supernovae in ellipticals, providing a well-understood host galaxy environment. These same deep cluster images then also yield fundamental calibrations required for future weak lensing and Sunyaev-Zel’dovich measurements of dark energy, as well as an entire program of cluster studies. The data will make possible a factor of two improvement on supernova constraints on dark energy time variation, and much larger improvement in systematic uncertainty. They will provide both a cluster dataset and a SN Ia dataset that will be a longstanding scientific resource.

NIC1/NIC2/NIC3 8794

NICMOS Post-SAA calibration – CR Persistence Part 5

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC2 10849

Imaging Scattered Light from Debris Disks Discovered by the Spitzer Space Telescope around 21 Sun-like Stars

We propose to use the high-contrast capability of the NICMOS coronagraph to image a sample of newly discovered circumstellar disks associated with Sun-like stars. These systems were identified by their strong thermal infrared {IR} emission with the Spitzer Space Telescope as part of the Spitzer Legacy Science program titled “The Formation and Evolution of Planetary Systems” {FEPS, P.I.: M.Meyer}. Modeling of the thermal excess emission from the spectral energy distributions alone cannot distinguish between narrowly confined high-opacity disks and broadly distributed, low-opacity disks. By resolving light scattered by the circumstellar material, our proposed NICMOS observations can break this degeneracy, thus revealing the conditions under which planet formation processes are occuring or have occured. For three of our IR-excess stars that have known radial-velocity planets, resolved imaging of the circumstellar debris disks may further offer an unprecedented view of planet-disk interactions in an extrasolar planetary system. Even non-detections of the light scattered by the circumstellar material will place strong constraints on the disk geometries, ruling out disk models with high optical depth. Unlike previous disk imaging programs, our program contains a well-defined sample of ~1 solar mass stars covering a range of ages from 3 Myr to 3 Gyr, thus allowing us to study the evolution of disks from primordial to debris for the first time. The results from our program will greatly improve our understanding of the architecture of debris disks around Sun-like stars, and will create a morphological context for the existence of our own solar system. This proposal is for a continuation of an approved Cycle 14 program {GO/10527, P.I.: D. Hines}.

WFPC2 10748

WFPC2 CYCLE 14 Standard Darks

This dark calibration program obtains dark frames every week in order to provide data for the ongoing calibration of the CCD dark current rate, and to monitor and characterize the evolution of hot pixels. Over an extended period these data will also provide a monitor of radiation damage to the CCDs.

WFPC2/ACS/HRC/WFPC 11020

Cycle 15 Focus Monitor

The focus of HST is measured primarily with ACS/HRC over full CVZ orbits to obtain accurate mean focus values via a well sampled breathing curve. Coma and astigmatism are also determined from the same data in order to further understand orbital effects on image quality and optical alignments. To monitor the stability of ACS to WFPC2 relative focii, we’ve carried over from previous focus monitor programs parallel observations taken with the two cameras at suitable orientations of previously observed targets, and interspersed them with the HRC CVZ visits.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

10497 – GSAcq (2,1,2) failed to RGA control due to Scan Step Limit Exceeded on FGS 2

At AOS (310/21:06:19) GSAcq (2,1,2), scheduled 310/20:13:22-20:20:51 had failed to RGA control due to Scan Step Limit Exceeded on FGS 2. OBAD MAP RSS value = 11.40 a-s.

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                         SCHEDULED      SUCCESSFUL
FGS GSacq               12                    11
FGS REacq               02                    02
OBAD with Maneuver  24                    24

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.