Status Report

NASA Hubble Space Telescope Daily Report #4215

By SpaceRef Editor
October 10, 2006
Filed under , ,
NASA Hubble Space Telescope Daily Report #4215
http://images.spaceref.com/news/hubble.3.jpg

HUBBLE SPACE TELESCOPE DAILY REPORT # 4215

– Continuing to collect World Class Science

PERIOD COVERED: UT October 06,07,08,09, 2006 (DOY 279,280,281,282)

OBSERVATIONS SCHEDULED

NIC1/NIC2/NIC3 8794

NICMOS Post-SAA calibration – CR Persistence Part 5

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC3 11064

CYCLE 15 NICMOS SPECTROPHOTOMETRY CALIBRATION PROGRAM

Now that the spectrophotometric capabilities of the NICMOS grism have been established, cycle 15 observations are needed to refine the sensitivity estimates, to check for sensitivity loss with time, to improve the accuracy of the linearity correction, to improve the secondary flux standards by re-observation, and to expand the G206 data set now that the sky subtraction technique has been shown to produce useful fluxes for some of the fainter secondary standards. These faint secondary IR standards will be a significant step towards establishing flux standards for JWST, as well as for SNAP, Spitzer, and SOFIA. 1.Re-observe the 3 primary WDs GD71, G191B2b, & GD153 twice each, once at the beginning and once near the end of the 18 month cycle. To date, we have only 2 observation of each star, while the corresponding STIS data set for these primary standards ranges from 6 to 23 obs. No observations exist for GD71 or GD153 with G206, so that the current G206 sensitivity is defined solely by G191B2B. Purposes: Refine sensitivities, measure sens losses. Orbits: 2 for each of 6 visits = 12 2. Re-observe WD1057 & WD1657 plus another P041C lamp-on visit to improve the scatter in the non-lin measurements per Fig. 8 of NIC ISR 2006-02. The WD stars require 2 orbits each, while the lamp-on test is done in one. The very faintest and most crucial standard WD1657 has 2 good visits already, so to substantially improve the S/N, two visits of two orbits are needed. Include G206 for P041C in the lamp-off baseline part of that orbit. Orbits: WD1057-2, WD1657-4, P041C-1 –> 7 3. Re-observe 9 secondary standards to improve S/N of the faint ones and to include G206 for all 9. BD+17 {3 obs} is not repeated in this cycle. Four are bright enough to do in one orbit: VB8, 2M0036+18, P330E, and P177D. Orbits:2*5+4=14 Grand Total orbits over 18 month cycle 15 is 12+6+14=32 {Roelof will submit the P041C lamp-on visit in a separate program.}

WFPC2 11029

WFPC2 CYCLE 15 Intflat Linearity Check and Filter Rotation Anomaly Monitor

Intflat observations will be taken to provide a linearity check: the linearity test consists of a series of intflats in F555W, in each gain and each shutter. A combination of intflats, visflats, and earthflats will be used to check the repeatability of filter wheel motions. {Intflat sequences tied to decons, visits 1-18 in prop 10363, have been moved to the cycle 15 decon proposal xxxx for easier scheduling.} Note: long-exposure WFPC2 intflats must be scheduled during ACS anneals to prevent stray light from the WFPC2 lamps from contaminating long ACS external exposures.

WFPC2 11027

Visible Earth Flats

This proposal monitors flatfield stability. This proposal obtains sequences of Earth streak flats to construct high quality flat fields for the WFPC2 filter set. These flat fields will allow mapping of the OTA illumination pattern and will be used in conjuction with previous internal and external flats to generate new pipeline superflats. These Earth flats will complement the Earth flat data obtained during cycles 4-14.

ACS/WFC/HRC 10920

High-Resolution Imaging of Nearby Lyman Break Galaxy Analogs in the GALEX All-Sky Survey

We have used the ultraviolet all-sky imaging survey currently being conducted by the Galaxy Evolution Explorer {GALEX} to identify for the first time a rare population of low-redshift starbursts with properties remarkably similar to high-redshift Lyman Break Galaxies. These compact UV luminous galaxies {UVLGs} resemble Lyman Break Galaxies in terms of size, UV luminosity, star-formation rate, surface brightness, mass, metallicity, kinematics, dust content, and color. They have characteristic “ages” {stellar mass/SFR} of only a few hundred Myr. This population of galaxies is thus worthy of study in its own right and as a sample of local analogs of Lyman Break Galaxies. We propose to image a sample of the 9 nearest and brightest compact UVLGs in the near-ultraviolet, near-infrared, and H-alpha using ACS. With these images we will 1} characterize their structure and morphology, 2} look for signs of interactions and mergers, 3} investigate the distribution and propogation of star formation over varying time scales, and 4} quantify the stellar populations and star formation history, in order to determine whether a previous generation of stars formed long before the current burst. These data will perfectly complement our existing Spitzer, GALEX, and SDSS data, and will provide important information on star-formation in the present-day universe as well as shed light on the earliest major episodes of star formation in high-redshift galaxies.

NIC2 10906

The Fundamental Plane of Massive Gas-Rich Mergers: II. The QUEST QSOs

We propose deep NICMOS H-band imaging of a carefully selected sample of 23 local QSOs. This program is the last critical element of a comprehensive investigation of the most luminous mergers in the nearby universe, the ultraluminous infrared galaxies {ULIRGs} and the quasars. This effort is called QUEST: Quasar / ULIRG Evolutionary STudy. The high-resolution HST images of the QUEST QSOs will complement an identical set of images on the ULIRG sample obtained during Cycle 12, an extensive set of ground-based data that include long-slit NIR spectra from a Large VLT Program, and a large set of mid-infrared spectra from a Cycle 1 medium-size program with Spitzer. This unique dataset will allow us to derive with unprecedented precision structual, kinematic, and activity parameters for a large unbiased sample of objects spanning the entire ULIRG/QSO luminosity function. These data will refine the fundamental plane of massive gas-rich mergers and enable us to answer the following quesitons: {1} Do ultraluminous mergers form elliptical galaxies, and in particular, giant ellipticals? {2} Do ULIRGs evolve into optical bright QSOs? The results from this detailed study of massive mergers in the local universe will be relevant to understanding the basic physical processes involved in creating massive early-type host on the one hand, and growing/feeding embedded massive black holes on the other, in major galaxy mergers. This is an important question since 50% of cosmic star formation at high-z and most of the big BHs appear to be formed in this process.

ACS/WFC 10905

The Dynamic State of the Dwarf Galaxy Rich Canes Venatici I Region

With accurate distances, the nearest groups of galaxies can be resolved in 3 dimensions and the radial component of the motions of galaxies due to local density perturbations can be distinquished from cosmological expansion components. Currently, with the ACS, galaxy distances within 8 Mpc can be measured effectively and efficiently by detecting the tip of the red giant branch {TRGB}. Of four principal groups at high galactic latitude in this domain, the Canes Venatici I Group {a} is the least studied, {b} is the most populated, though overwhelmingly by dwarf galaxies, and {c} is likely the least dynamically evolved. It is speculated that galaxies in low mass groups may fail to retain baryons as effectively as those in high mass groups, resulting in significantly higher mass-to-light ratios. The CVn I Group is suspected to lie in the mass regime where the speculated astrophysical processes that affect baryon retention are becoming important.

NIC2 10893

Sweeping Away the Dust: Reliable Dark Energy with an Infrared Hubble Diagram

We propose building a high-z Hubble Diagram using type Ia supernovae observed in the infrared rest-frame J-band. The infrared has a number of exceptional properties. The effect of dust extinction is minimal, reducing a major systematic tha may be biasing dark energy measurements. Also, recent work indicates that type Ia supernovae are true standard candles in the infrared meaning that our Hubble diagram will be resistant to possible evolution in the Phillips relation over cosmic time. High signal-to-noise measurements of 9 type Ia events at z~0.4 will be compared with an independent optical Hubble diagram from the ESSENCE project to test for a shift in the derived dark energy equation of state due to a systematic bias. Because of the bright sky background, H-band photometry of z~0.4 supernovae is not feasible from the ground. Only the superb image quality and dark infrared sky seen by HST makes this test possible. This experiment may also lead to a better, more reliable way of mapping the expansion history of the universe with the Joint Dark Energy Mission.

ACS/WFC 10886

The Sloan Lens ACS Survey: Towards 100 New Strong Lenses

As a continuation of the highly successful Sloan Lens ACS {SLACS} Survey for new strong gravitational lenses, we propose one orbit of ACS-WFC F814W imaging for each of 50 high- probability strong galaxy-galaxy lens candidates. These observations will confirm new lens systems and permit immediate and accurate photometry, shape measurement, and mass modeling of the lens galaxies. The lenses delivered by the SLACS Survey all show extended source structure, furnishing more constraints on the projected lens potential than lensed-quasar image positions. In addition, SLACS lenses have lens galaxies that are much brighter than their lensed sources, facilitating detailed photometric and dynamical observation of the former. When confirmed lenses from this proposal are combined with lenses discovered by SLACS in Cycles 13 and 14, we expect the final SLACS lens sample to number 80–100: an approximate doubling of the number of known galaxy-scale strong gravitational lenses and an order-of-magnitude increase in the number of optical Einstein rings. By virtue of its homogeneous selection and sheer size, the SLACS sample will allow an unprecedented exploration of the mass structure of the early-type galaxy population as a function of all other observable quantities. This new sample will be a valuable resource to the astronomical community by enabling qualitatively new strong lensing science, and as such we will waive all but a short {3-month} proprietary period on the observations.

ACS/WFC 10880

The host galaxies of QSO2s: AGN feeding and evolution at high luminosities

Now that the presence of supermassive black holes in the nuclei of galaxies is a well established fact, other questions related to the AGN phenomena still have to be answered. Problems of particular interest are how the AGN gets fed, how the black hole evolves and how the evolution of the black hole is related to the evolution of the galaxy bulge. Here we propose to address some of these issues using ACS/WFC + F775W snapshot images of 73 QSO2s with redshifts in the range 0.3

ACS/WFC 10848

Relating the host galaxies of type-2 quasars to their infrared properties

The obscured quasar population has been found to consist of a wide variety of objects. In this proposal, we wish to study the host galaxies of six z~0.6 type-2 quasars selected via their mid- infrared emission. Infrared spectra and photometry of these objects show that they include both actively star-forming and non-starforming galaxies, and have dust columns to the AGN ranging from moderate to high. We will relate the host galaxy properties to the infrared properties of these type-2 quasars, and to the host galaxies of type-1 quasars of similar redshift and bolometric luminosity. These observations will thus help us to understand how the different types of obscured quasars are related to each other, and to the normal quasar population.

ACS/WFC 10829

Secular Evolution at the End of the Hubble Sequence

The bulgeless disk galaxies at the end of the Hubble Sequence evolve at a glacial pace relative to their more violent, earlier-type cousins. The causes of their internal, or secular evolution are important because secular evolution represents the future fate of all galaxies in our accelerating Universe and is a key ingredient to understanding galaxy evolution in lower-density environments at present. The rate of secular evolution is largely determined by the stability of the cold ISM against collapse, star formation, and the buildup of a central bulge. Key diagnostics of the ISM’s stability are the presence of compact molecular clouds and narrow dust lanes. Surprisingly, edge-on, pure disk galaxies with circular velocities below 120 km/s do not appear to contain such dust lanes. We propose to obtain ACS/WFC F606W images of a well-selected sample of extremely late-type disk galaxies to measure the characteristic scale size of the cold ISM and determine if they possess the unstable, cold ISM necessary to drive secular evolution. Our sample has been carefully constructed to include disk galaxies above and below the critical circular velocity of 120 km/s where the dust properties of edge-on disks change so remarkably. We will then use surface brightness profiles to search for nuclear star clusters and pseudobulges, which are early indicators that secular evolution is at work, as well as measure the pitch angle of the dust lanes as a function of radius to estimate the central mass concentrations.

NIC2 10825

The Formation Epoch of Early-type Galaxies: Constraints from the Fundamental Plane at z=1.3

Field and cluster surveys both show a ~50% decrease in the number of early-type galaxies at redshifts near 1. Galaxies that have either recently transformed into early-types or undergone star formation should have younger appearing stellar populations. The resulting change in the mass-to-light ratio can be detected by the offset in the fundamental plane with redshift. We will use the fundamental plane to test whether a significant fraction of early-type galaxies have evidence of recent star formation, using a sample of ~20 z=1.3 cluster and field early-type galaxies. This is 7 times larger than the sample previously used at this redshift. We already have the high signal-to-noise 12-20 hour long Keck spectra for these galaxies we need for velocity dispersions. To use the fundamental plane, we require sizes and surface brightnesses. We propose 12 orbits of NICMOS Camera 2 imaging to measure the sizes and surface brightness distributions of these objects in a rest-frame optical passband. These data will provide high quality surface brightness profiles out two ~2 half-light radii, at wavelengths comparable to previous fundamental plane studies. When combined with our spectra, the HST data will establish the mass-to-light ratio evolution for massive early-type galaxies from the fundamental plane. We will define the epoch of last star formation for these z=1.3 galaxies, directly testing the claims of strong evolution at z=1.

NIC2, ACS/WFC 10802

SHOES-Supernovae, HO, for the Equation of State of Dark energy

The present uncertainty in the value of the Hubble constant {resulting in an uncertainty in Omega_M} and the paucity of Type Ia supernovae at redshifts exceeding 1 are now the leading obstacles to determining the nature of dark energy. We propose a single, integrated set of observations for Cycle 15 that will provide a 40% improvement in constraints on dark energy. This program will observe known Cepheids in six reliable hosts of Type Ia supernovae with NICMOS, reducing the uncertainty in H_0 by a factor of two because of the smaller dispersion along the instability strip, the diminished extinction, and the weaker metallicity dependence in the infrared. In parallel with ACS, at the same time the NICMOS observations are underway, we will discover and follow a sample of Type Ia supernovae at z > 1. Together, these measurements, along with prior constraints from WMAP, will provide a great improvement in HST’s ability to distinguish between a static, cosmological constant and dynamical dark energy. The Hubble Space Telescope is the only instrument in the world that can make these IR measurements of Cepheids beyond the Local Group, and it is the only telescope in the world that can be used to find and follow supernovae at z > 1. Our program exploits both of these unique capabilities of HST to learn more about one of the greatest mysteries in science.

ACS/HRC/WFC 10758

ACS CCDs daily monitor

This program consists of a set of basic tests to monitor, the read noise, the development of hot pixels and test for any source of noise in ACS CCD detectors. The files, biases and dark will be used to create reference files for science calibration. This programme will be for the entire lifetime of ACS. Changes from cycle 13:- The default gain for WFC is 2 e-/DN. As before bias frames will be collected for both gain 1 and gain 2. Dark frames are acquired using the default gain {2}. This program cover the period May, 31 2006- Oct, 1-2006. The first half of the program has a different proposal number: 10729.

WFPC2 10748

WFPC2 CYCLE 14 Standard Darks

This dark calibration program obtains dark frames every week in order to provide data for the ongoing calibration of the CCD dark current rate, and to monitor and characterize the evolution of hot pixels. Over an extended period these data will also provide a monitor of radiation damage to the CCDs.

ACS/HRC/WFC 10733

CCD Hot Pixel Annealing

Hot pixel annealing will continue to be performed once every 4 weeks. The CCD TECs will be turned off and heaters will be activated to bring the detector temperatures to about +20C. This state will be held for approximately 6 hours, after which the heaters are turned off, the TECs turned on, and the CCDs returned to normal operating condition. To assess the effectiveness of the annealing, a bias and four dark images will be taken before and after the annealing procedure for both WFC and HRC. The HRC darks are taken in parallel with the WFC darks. The charge transfer efficiency {CTE} of the ACS CCD detectors declines as damage due to on-orbit radiation exposure accumulates. This degradation has been closely monitored at regular intervals, because it is likely to determine the useful lifetime of the CCDs. We combine the annealling activity with the charge transfer efficiency monitoring and also merge into the routine dark image collection. To this end, the CTE monitoring exposures have been moved into this proposal . All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} and First Pixel Response {FPR} data will be obtained over a range of signal levels for both the Wide Field Channel {WFC}, and the High Resolution Channel {HRC}.

ACS/WFC/NIC3 10632

Searching for galaxies at z>6.5 in the Hubble Ultra Deep Field

We propose to obtain deep ACS {F606W, F775W, F850LP} imaging in the area of the original Hubble Ultra Deep Field NICMOS parallel fields and – through simultaneous parallel observations – deep NICMOS {F110W, F160W} imaging of the ACS UDF area. Matching the extreme imaging depth in the optical and near-IR bands will result in seven fields with sufficiently sensitive multiband data to detect the expected typical galaxies at z=7 and 8. Presently no such a field exist. Our combined optical and near-IR ultradeep fields will be in three areas separated by about 20 comoving Mpc at z=7. This will allow us to give a first assessment of the degree of cosmic variance. If reionization is a process extending over a large redshift interval and the luminosity function doesn’t evolve strongly beyond z=6, these data will allow us to identify of the order of a dozen galaxies at 6.56.5. Conversely, finding fewer objects would be an indication that the bulk of reionization is done by galaxies at z=6. By spending 204 orbits of prime HST time we will capitalize on the investment of 544 prime orbits already made on the Hubble Ultra Deep Field {UDF}. We have verified that the program as proposed is schedulable and that it will remain so even if forced to execute in the 2-gyro mode. The data will be non-proprietary and the reduced images will be made public within 2 months from the completion of the observations.

NIC2 10519

Testing the Stellar Coalescence and Accretion Disk Theories of Massive Star Formation with NICMOS

The importance of massive stars cannot be underestimated – they produce most of the heavy elements in the universe and dominate the evolution of the interstellar medium in their vicinity. In spite of their significance, our understanding of their formation is meager. Both accretion through disks, analogous to the process of low-mass star formation, and coalescence of low-mass stars through collisions in the dense cores of stellar clusters have been suggested. Possibly both mechanisms occur. High spatial resolution polarization measurements of the closest massive young stellar objects {YSOs} will enable us to search for evidence of disk accretion or coalescence in the form of patterns indicative of light scattered off a coherent disk or off a disk disrupted by an infalling star, respectively. Here we propose to use 2 micron polarimetry with NICMOS to identify the presence of accretion disks around massive YSOs or to characterize their environments as possibly disrupted from a close stellar encounter. There are only a few sources that meet the stringent selection criteria for this investigation {even with HST}, which we will examine here. High spatial resolution is required, but even more important, the point spread function {PSF} must be stable with time. Furthermore, the PSF must put minimal flux into large spatial scales, something that cannot be achieved with adaptive optics. This combination of high Strehl ratio and stable PSF can only be achieved from space.

ACS/WFC/NIC2 10496

Decelerating and Dustfree: Efficient Dark Energy Studies with Supernovae and Clusters

We propose a novel HST approach to obtain a dramatically more useful “dust free” Type Ia supernovae {SNe Ia} dataset than available with the previous GOODS searches. Moreover, this approach provides a strikingly more efficient search-and-follow-up that is primarily pre- scheduled. The resulting dark energy measurements do not share the major systematic uncertainty at these redshifts, that of the extinction correction with a prior. By targeting massive galaxy clusters at z > 1 we obtain a five-times higher efficiency in detection of Type Ia supernovae in ellipticals, providing a well-understood host galaxy environment. These same deep cluster images then also yield fundamental calibrations required for future weak lensing and Sunyaev-Zel’dovich measurements of dark energy, as well as an entire program of cluster studies. The data will make possible a factor of two improvement on supernova constraints on dark energy time variation, and much larger improvement in systematic uncertainty. They will provide both a cluster dataset and a SN Ia dataset that will be a longstanding scientific resource.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

10461 – GSacq(2,1,1) failed due to search radius limit exceeded GSacq(2,1,1)scheduled at 281/22:23:27 failed at 22:27:22 due to search radius limit exceeded on FGS 1. ESB a07(C Timeout-DV) was received.

OBAD1 showed errors of V1=-910.88, V2=3063.39, V3=219.29, RSS=3203.46.

OBAD2 showed errors of V1=-8.47, V2=-1.22, V3=-8.46, RSS=12.04.

COMPLETED OPS REQUEST: 983-2 – Documentation of Modification to 8051 RAM

COMPLETED OPS NOTES: (None)

                            SCHEDULED      SUCCESSFUL
FGS GSacq                  33                    32
FGS REacq                  25                    25
OBAD with Maneuver   116                   116

SIGNIFICANT EVENTS:

Flash Report for ACS HRC and CEB Single Toggle test

At 282/21:55 the ACS HRC CEB internal ASPC2 relay was successfully cycled from side 2 to side 1 and then back via real-time command (OPS Request #17938). All other HRC CEB internal relays were also successfully cycled.

ACS will start its transition from it monthly anneal cycle to WFHROper at 283/09:01. LVPS CEB power will be applied to both the HRC and WFC CEB at 283/09:40:33. At this time, the results of the single toggle will be seen in the telemetry down link and another flash report will be sent out indicating Joy/NoJoy.

Single Toggle test Flash Report #2

The ACS HRC CEB ASPC2 +35 voltage has been restored as a result of the single toggle. All other voltages and temperatures are within their normal ranges. The SISE will continue to monitor the input voltage over the next few days.

SpaceRef staff editor.