Status Report

NASA Hubble Space Telescope Daily Report #4198

By SpaceRef Editor
September 14, 2006
Filed under , ,
NASA Hubble Space Telescope Daily Report #4198

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science


PERIOD COVERED: UT September 13, 2006 (DOY 256)




ACS CCDs daily monitor

This program consists of a set of basic tests to monitor, the read noise, the development of hot pixels and test for any source of noise in ACS CCD detectors. The files, biases and dark will be used to create reference files for science calibration. This programme will be for the entire lifetime of ACS. Changes from cycle 13:- The default gain for WFC is 2 e-/DN. As before bias frames will be collected for both gain 1 and gain 2. Dark frames are acquired using the default gain {2}. This program cover the period May, 31 2006- Oct, 1-2006. The first half of the program has a different proposal number: 10729.

ACS/WFC 10494

Imaging the mass structure of distant lens galaxies

The surface brightness distribution of extended gravitationally lensed arcs and Einstein rings contains super-resolved information about the lensed object, and, more excitingly, about the smooth and clumpy mass distribution of the lens galaxies. The source and lens information can non-parametrically be separated, resulting in a direct “gravitational-mass image” of the inner mass-distribution of cosmologically-distant galaxies {Koopmans 2005}. With this goal in mind, we propose deep HST ACS-F555W/F814W and NICMOS-F160W imaging of 15 gravitational-lens systems with spatially resolved lensed sources, selected from the 17 new lens systems discovered by the Sloan Lens ACS Survey {Bolton et al. 2004}. Each system has been selected from the SDSS and confirmed in a time-efficient HST-ACS snapshot program {cycle-13}; they show highly-magnified arcs or Einstein rings, lensed by a massive early-type lens galaxy. High- fidelity multi-color HST images are required {not delivered by the 420-sec snapshot images} to isolate these lensed images {properly cleaned, dithered and extinction-corrected} from the lens galaxy surface brightness distribution, and apply our “gravitational-mass imaging” technique. The sample of galaxy mass distributions – determined through this method from the arcs and Einstein ring HST images – will be studied to: {i} measure the smooth mass distribution of the lens galaxies {Dark and luminous mass are separated using the HST images and the stellar M/L values derived from a joint stellar-dynamical analysis of each system}; {ii} quantify statistically and individually the incidence of mass-substructure {with or without obvious luminous counter- parts such as dwarf galaxies}. Since dark-matter substructure should be considerably more prevalent at higher redshift, both results provide a direct test of this prediction of the CDM hierarchical structure-formation model.

ACS/WFC 10880

The host galaxies of QSO2s: AGN feeding and evolution at high luminosities

Now that the presence of supermassive black holes in the nuclei of galaxies is a well established fact, other questions related to the AGN phenomena still have to be answered. Problems of particular interest are how the AGN gets fed, how the black hole evolves and how the evolution of the black hole is related to the evolution of the galaxy bulge. Here we propose to address some of these issues using ACS/WFC + F775W snapshot images of 73 QSO2s with redshifts in the range 0.3

NIC1 10725

Photometric Stability

This NICMOS calibration proposal carries out photometric monitoring observations during Cycle 14. The format of the program is similar to that of the Cycle 12 program 9995 and Cycle 13 program 10381, but a few modifications were made. Provisions had to be made to adopt to 2- gyro mode {G191B2B was added as extra target to provide target visibility through most of the year}. Where before 4 or 7 dithers were made in a filter before we moved to the next filter, now we observe all filters at one position before moving to the next dither position. While the previous method was chosen to minimize the effect of persistence, we now realize that persistence is connected to charge trapping and by moving through the filter such that the count rate increases, we reach equilibrium more quickly between charge being trapped and released. We have also increased exposure times where possible to reduce the charge trapping non-linearity effects.

NIC1 10889

The Nature of the Halos and Thick Disks of Spiral Galaxies

We propose to resolve the extra-planar stellar populations of the thick disks and halos of seven nearby, massive, edge-on galaxies using ACS, NICMOS, and WFPC2 in parallel. These observations will provide accurate star counts and color-magnitude diagrams 1.5 magnitudes below the tip of the Red Giant Branch sampled along the two principal axes and one intermediate axis of each galaxy. We will measure the metallicity distribution functions and stellar density profiles from star counts down to very low average surface brightnesses, equivalent to ~32 V- mag per square arcsec. These observations will provide the definitive HST study of extra-planar stellar populations of spiral galaxies. Our targets cover a range in galaxy mass, luminosity, and morphology and as function of these galaxy properties we will provide: – The first systematic study of the radial and isophotal shapes of the diffuse stellar halos of spiral galaxies – The most detailed comparative study to date of thick disk morphologies and stellar populations – A comprehensive analysis of halo and thick disk metallicity distributions as a function of galaxy type and position within the galaxy. – A sensitive search for tidal streams – The first opportunity to directly relate globular cluster systems to their field stellar population We will use these fossil records of the galaxy assembly process preserved in the old stellar populations to test halo and thick disk formation models within the hierarchical galaxy formation scheme. We will test LambdaCDM predictions on sub-galactic scales, where it is difficult to test using CMB and galaxy redshift surveys, and where it faces its most serious difficulties.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration – CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NIC2 10852

Coronagraphic Polarimetry with NICMOS: Dust grain evolution in T Tauri stars

The formation of planetary systems is intimately linked to the dust population in circumstellar disks, thus understanding dust grain evolution is essential to advancing our understanding of how planets form. By combining {1} the coronagraphic polarimetry capabilities of NICMOS, {2} powerful 3-D radiative transfer codes, and {3} observations of objects known to span the Class II-III stellar evolutionary phases, we will gain crucial insight into dust grain growth. By observing objects representative of a known evolutionary sequence of YSOs, we will be able to investigate how the dust population evolves in size and distribution during the crucial transition from a star+disk system to a system containing planetesimals. When combine with our previous study on dust grain evolution in the Class I-II phase, the proposed study will help to establish the fundamental time scales for the depletion of ISM-like grains: the first step in understanding the transformation from small submicron sized dust grains, to large millimeter sized grains, and untimely to planetary bodies.

WFPC2 10915

ACS Nearby Galaxy Survey

Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST’s lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to ~3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to ~1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR~10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for ~100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: 10427 – GSAcq (2,1,1) failed due to Search Radius Limit Exceeded on FGS 2

At AOS 256/22:27:09 GSAcq (2,1,1) scheduled from 256/22:17:20-22:24:24 had failed due to search radius limit exceeded on FGS 2. Received two 486 ESB messages, one 1805 (FHST Moving Target Detected) and one a05 (Exceeded SRL). Pre-acq OBAD #1 data unavailable due to LOS. Pre-acq OBAD #2 RSS value 21.18 a-s.

At AOS 256/23:07:27 OBAD MAP scheduled at 256/23:01:15 showed the following values: V1 -723.36, V2 4692.77, V3 -455.02, RSS 4769.95

Upon acquisition of signal at 257/03:23:31, the REacq(2,1,1) scheduled at 257/03:03:00 – 03:11:04 failed to RGA hold due to search radius limit exceeded on FGS-2 (QF2SRLEX). Additional ESB “a05” (FGS coarse track failed, search radius limit exceeded).



                         SCHEDULED      SUCCESSFUL
FGS GSacq                07                    06
FGS REacq                07                     06
OBAD with Maneuver   28                     28


SpaceRef staff editor.