Status Report

NASA Hubble Space Telescope Daily Report #4195

By SpaceRef Editor
September 11, 2006
Filed under , ,
NASA Hubble Space Telescope Daily Report #4195
http://images.spaceref.com/news/hubble.4.jpg

HUBBLE SPACE TELESCOPE DAILY REPORT # 4195

Continuing to collect World Class Science

PERIOD COVERED: UT September 08,09,10, 2006 (DOY 251,252,253)

OBSERVATIONS SCHEDULED

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration – CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

ACS/WFC 10917

Afterglows and Environments of Short-Hard Gamma-Ray Bursts

Discovery of the first afterglows of short-hard bursts {SHBs} has led to a revolution in our understanding of these events, strongly suggesting that they originate in the mergers of compact-object binaries. Capitalizing on this progress, we propose to pursue the next generation of SHB observations with HST, tracking the decay of all accessible SHB afterglows to late times and pinpointing the location of several more within the context of their host galaxies. These observations will allow quantitative analysis of progenitor lifetimes and short burst environments, enable direct confrontation with population synthesis models, and provide updated event rate estimates for the LIGO and VIRGO gravitational-wave detectors that are now coming on-line.

WFPC2 10915

ACS Nearby Galaxy Survey

Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST’s lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to ~3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to ~1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR~10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for ~100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

ACS/WFC 10886

The Sloan Lens ACS Survey: Towards 100 New Strong Lenses

As a continuation of the highly successful Sloan Lens ACS {SLACS} Survey for new strong gravitational lenses, we propose one orbit of ACS-WFC F814W imaging for each of 50 high- probability strong galaxy-galaxy lens candidates. These observations will confirm new lens systems and permit immediate and accurate photometry, shape measurement, and mass modeling of the lens galaxies. The lenses delivered by the SLACS Survey all show extended source structure, furnishing more constraints on the projected lens potential than lensed-quasar image positions. In addition, SLACS lenses have lens galaxies that are much brighter than their lensed sources, facilitating detailed photometric and dynamical observation of the former. When confirmed lenses from this proposal are combined with lenses discovered by SLACS in Cycles 13 and 14, we expect the final SLACS lens sample to number 80–100: an approximate doubling of the number of known galaxy-scale strong gravitational lenses and an order-of-magnitude increase in the number of optical Einstein rings. By virtue of its homogeneous selection and sheer size, the SLACS sample will allow an unprecedented exploration of the mass structure of the early-type galaxy population as a function of all other observable quantities. This new sample will be a valuable resource to the astronomical community by enabling qualitatively new strong lensing science, and as such we will waive all but a short {3-month} proprietary period on the observations.

ACS/WFC 10882

Emission Line Snapshots of 3CR Radio Galaxies

Radio galaxies are an important class of extragalactic objects: they are one of the most energetic astrophysical phenomena and they provide an exceptional probe of the evolving Universe, lying typically in high density regions but well-represented across a wide redshift range. In earlier Cycles we carried out extensive HST observations of the 3CR sources in order to acquire a complete and quantitative inventory of the structure, contents and evolution of these important objects. We discovered new optical jets, dust lanes, and revealed point-like nuclei whose properties support AGN unified schemes. Here, we propose to obtain ACS emission line images at low and high excitation of 3CR sources with z<0.3, both low- and classical high- power radio galaxies, as a major enhancement to an already superb dataset. We aim to probe fundamental relationships between warm optical line-emitting gas, radio source structure {jets and lobes} and X-ray coronal halos. We will combine our existing UV images with new emission- line images to establish quantitative star formation characteristics and their relation to dust and merging, and with emission-line excitation maps, test theories on ionization beam patterns and luminosities from active nuclei. We will seek jet induced star formation and knowing optical emission-line physics, investigate quantitative jet physics. The nuclear emission line properties of the galaxies will themselves be established and used as ingredients in continuing tests of unified AGN theories. The resulting database will be an incredibly valuable resource to the astronomical community for years to come.

ACS/WFC 10881

The Ultimate Gravitational Lensing Survey of Cluster Mass and Substructure

We propose a systematic and detailed investigation of the mass, substructure, and thermodynamics of one hundred X-ray luminous galaxy clusters at 0.15 < z < 0.3. The primary goal is to test our recent suggestion that this population is dominated by dynamically immature disturbed clusters, and that the observed mass-temperature relation suffers strong structural segregation. If confirmed, this would represent a paradigm shift in our observational understanding of clusters, that were hitherto believed to be dominated by mature, undisturbed systems. The key observation to this endeavor is Hubble imaging of cluster cores to identify robustly tangential and radial multiple arcs and measure the shape of faint galaxies. These strong and weak lensing signals will give an accurate measure of the total mass and structure of the dark matter distribution that we will subsequently compare with X-ray and Sunyaev Zeldovich Effect observables. The broader applications of our project include 1} the calibration of mass-temperature and mass-SZE scaling relations which will be critical for the calibration of proposed dark energy experiments, and 2} the low redshift baseline study of the demographics of massive clusters to aid interpretation of future high redshift {z>1} cluster samples. For this ultimate cluster survey, we request ACS SNAPSHOTS through the F606W filter drawn from a target list of 143 clusters.

NIC1 10879

A search for planetary-mass companions to the nearest L dwarfs – completing the survey

We propose to extend the most sensitive survey yet undertaken for very low-mass companions to ultracool dwarfs. We will use NICMOS to complete imaging of an all-sky sample of 87 L dwarfs in 80 systems within 20 parsecs of the Sun. The combination of infrared imaging and proximity allows us to search for companions with mass ratios q>0.25 at separations exceeding ~3 AU, while probing companions with q>0.5 at ~1.5 AU separation. This resolution is crucial, since no ultracool binaries are known in the field with separations exceeding 15 AU. Fifty L dwarfs from the 20-parsec sample have high-resolution imaging, primarily through our Cycle 13 HST proposal which identified six new binaries, including an L/T system. Here, we propose to target the remaining 30 dwarfs

NIC2 10849

Imaging Scattered Light from Debris Disks Discovered by the Spitzer Space Telescope around 21 Sun-like Stars

We propose to use the high-contrast capability of the NICMOS coronagraph to image a sample of newly discovered circumstellar disks associated with Sun-like stars. These systems were identified by their strong thermal infrared {IR} emission with the Spitzer Space Telescope as part of the Spitzer Legacy Science program titled “The Formation and Evolution of Planetary Systems” {FEPS, P.I.: M.Meyer}. Modeling of the thermal excess emission from the spectral energy distributions alone cannot distinguish between narrowly confined high-opacity disks and broadly distributed, low-opacity disks. By resolving light scattered by the circumstellar material, our proposed NICMOS observations can break this degeneracy, thus revealing the conditions under which planet formation processes are occuring or have occured. For three of our IR-excess stars that have known radial-velocity planets, resolved imaging of the circumstellar debris disks may further offer an unprecedented view of planet-disk interactions in an extrasolar planetary system. Even non-detections of the light scattered by the circumstellar material will place strong constraints on the disk geometries, ruling out disk models with high optical depth. Unlike previous disk imaging programs, our program contains a well-defined sample of ~1 solar mass stars covering a range of ages from 3 Myr to 3 Gyr, thus allowing us to study the evolution of disks from primordial to debris for the first time. The results from our program will greatly improve our understanding of the architecture of debris disks around Sun-like stars, and will create a morphological context for the existence of our own solar system. This proposal is for a continuation of an approved Cycle 14 program {GO/10527, P.I.: D. Hines}.

ACS/WFC 10846

The Halo Structure of RCS2-2327.4-0204

We propose ACS, NICMOS, and Chandra observations of the central region of the extraordinary and newly discovered galaxy cluster: RCS2-2327.4-0204 at z=0.700. This cluster shows 3 or more arcs in ground-based imaging, with an Einstein radius of 49″. Such a large Einstein radius {3-4 times larger than seen in most clusters} has been seen in precisely one other cluster in the universe – namely Abell 1689 at z=0.18. From our proposed data we expect to see ~70 lensed source images, from ~20 image families. We will use both strong and weak lensing constraints from these data to construct the central mass profile of the cluster, which, when combined with ground based data extending to a half degree FOV, will allow us to measure critically important dark matter halo parameters {such as concentration}. The target cluster is selected from a large ongoing survey with a well-defined search volume, which allows us to compare our results to expectations from simulations. We will also compare the lensing derived mass profiles to the x- ray equivalent measures; this will illuminate whether the dominant baryonic component is in equilibrium with the potential. The area of high magnification behind this cluster is an order of magnitude larger than typical lensing clusters observed previously by HST; this order of magnitude increase in area directly translates into a 10 times better chance for finding very high redshift galaxies. Many of the highest redshift galaxies found to date have been found behind massive lensing clusters observed by HST, and we expect to add to that sample dramatically.

NIC2, ACS/WFC 10802

SHOES-Supernovae, HO, for the Equation of State of Dark energy

The present uncertainty in the value of the Hubble constant {resulting in an uncertainty in Omega_M} and the paucity of Type Ia supernovae at redshifts exceeding 1 are now the leading obstacles to determining the nature of dark energy. We propose a single, integrated set of observations for Cycle 15 that will provide a 40% improvement in constraints on dark energy. This program will observe known Cepheids in six reliable hosts of Type Ia supernovae with NICMOS, reducing the uncertainty in H_0 by a factor of two because of the smaller dispersion along the instability strip, the diminished extinction, and the weaker metallicity dependence in the infrared. In parallel with ACS, at the same time the NICMOS observations are underway, we will discover and follow a sample of Type Ia supernovae at z > 1. Together, these measurements, along with prior constraints from WMAP, will provide a great improvement in HST’s ability to distinguish between a static, cosmological constant and dynamical dark energy. The Hubble Space Telescope is the only instrument in the world that can make these IR measurements of Cepheids beyond the Local Group, and it is the only telescope in the world that can be used to find and follow supernovae at z > 1. Our program exploits both of these unique capabilities of HST to learn more about one of the greatest mysteries in science.

ACS/WFC 10787

Modes of Star Formation and Nuclear Activity in an Early Universe Laboratory

Nearby compact galaxy groups are uniquely suited to exploring the mechanisms of star formation amid repeated and ongoing gravitational encounters, conditions similar to those of the high redshift universe. These dense groups host a variety of modes of star formation, and they enable fresh insights into the role of gas in galaxy evolution. With Spitzer mid-IR observations in hand, we have begun to obtain high quality, multi-wavelength data for a well-defined sample of 12 nearby {<4500km/s} compact groups covering the full range of evolutionary stages. Here we propose to obtain sensitive BVI images with the ACS/WFC, deep enough to reach the turnover of the globular cluster luminosity function, and WFPC2 U-band and ACS H-alpha images of Spitzer- identified regions hosting the most recent star formation. In total, we expect to detect over 1000 young star clusters forming inside and outside galaxies, more than 4000 old globular clusters in

>40 giant galaxies {including 16 early-type galaxies}, over 20 tidal

features, approximately 15 AGNs, and intragroup gas in most of the 12 groups. Combining the proposed ACS images with Chandra observations, UV GALEX observations, ground-based H-alpha imaging, and HI data, we will conduct a detailed study of stellar nurseries, dust, gas kinematics, and AGN. WFPC2 10767

Further Resolving the Puzzle of Hybrid Star X-rays

Do Alpha TrA {K2II} and Beta Ind {K1II} have previously unrecognized X-ray active dwarf companions, leading us astray concerning the coronal properties of the “hybrid-chromosphere” class? Establishing the true X-ray luminosities of the hybrids is a basis for understanding magnetic field generation in evolved supergiants, the driving of their winds, and the seeding of coronal conditions in their extended outer envelopes. It also bears on the issue of late-type dwarfs orbiting main sequence B stars, the evolutionary predecessors of K bright giants. We propose to directly image the putative hybrid companions using Chandra, with supporting observations from HST/WFPC2.

ACS/HRC/WFC 10758

ACS CCDs daily monitor

This program consists of a set of basic tests to monitor, the read noise, the development of hot pixels and test for any source of noise in ACS CCD detectors. The files, biases and dark will be used to create reference files for science calibration. This programme will be for the entire lifetime of ACS. Changes from cycle 13:- The default gain for WFC is 2 e-/DN. As before bias frames will be collected for both gain 1 and gain 2. Dark frames are acquired using the default gain {2}. This program cover the period May, 31 2006- Oct, 1-2006. The first half of the program has a different proposal number: 10729.

ACS/HRC 10752

Cycle 14 Focus Monitor

The focus of HST is measured primarily with ACS/HRC over full CVZ orbits to obtain accurate mean focus values via a well sampled breathing curve. Coma and astigmatism are also determined from the same data in order to further understand orbital effects on image quality and optical alignments. To monitor the stability of ACS to WFPC2 relative focii, we’ve carried over from previous focus monitor programs parallel observations taken with the two cameras at suitable orientations of previously observed targets, and interspersed them with the HRC CVZ visits.

ACS/HRC/WFC 10733

CCD Hot Pixel Annealing

Hot pixel annealing will continue to be performed once every 4 weeks. The CCD TECs will be turned off and heaters will be activated to bring the detector temperatures to about +20C. This state will be held for approximately 6 hours, after which the heaters are turned off, the TECs turned on, and the CCDs returned to normal operating condition. To assess the effectiveness of the annealing, a bias and four dark images will be taken before and after the annealing procedure for both WFC and HRC. The HRC darks are taken in parallel with the WFC darks. The charge transfer efficiency {CTE} of the ACS CCD detectors declines as damage due to on-orbit radiation exposure accumulates. This degradation has been closely monitored at regular intervals, because it is likely to determine the useful lifetime of the CCDs. We combine the annealling activity with the charge transfer efficiency monitoring and also merge into the routine dark image collection. To this end, the CTE monitoring exposures have been moved into this proposal . All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} and First Pixel Response {FPR} data will be obtained over a range of signal levels for both the Wide Field Channel {WFC}, and the High Resolution Channel {HRC}.

NIC1/NC2/NC3 10723

Cycle 14 NICMOS dark current, shading profile, and read noise monitoring program

The purpose of this proposal is to monitor the dark current, read noise, and shading profile for all three NICMOS detectors throughout the duration of Cycle 14. This proposal is a slightly modified version of proposal 10380 of cycle 13 and 9993 of cycle12 that we cut down some exposure time to make the observation fit within 24 orbits.

ACS/WFC/WFPC2 10584

The link between X-ray source and stellar populations in M81

We propose to perform a deep v~26-27.0 HST-ACS survey of the nearby {3.6 Mpc} spiral galaxy M~81 in order to study the nature of its X-ray source populations detected with Chandra. For the first time in a galaxy other than the Milky-Way or the Magelanic Clouds, we will classify X-ray sources as High-Mass and Low-Mass X-ray binaries {HMXBs, LMXBs} and investigate how these populations depend on their galactic environment. The classification will be performed {a} by finding and classifying unique optical counterparts for the X-ray sources and {b} studying the stellar populations in their vicinity. Both tasks require the <0.1'' resolution of HST-ACS which matches well the positional accuracy of Chandra. Finally we will use these results together with X-ray binary evolution synthesis models in order to constrain X-ray binary {XRB} evolution channels. These data will also be a great resource for studies of the star-formation and star- cluster populations in one of the prototypical spiral galaxies.

ACS/HRC 10563

Accurate dark-matter mass profiles in 3 elliptical galaxies as a test of CDM

A critical test of the successful Lambda-CDM picture for structure formation is the measurement of the power law exponent, gamma, of the centre of dark matter density profiles, predicted to lie in the range 1.0-1.5. Measurements of gamma derived from rotation curves of LSB galaxies appear to contradict CDM, but rely on assumptions that are difficult to verify {e.g. axisymmetry}. We have recently demonstrated, using our new `semi-linear’ inversion method, how strong gravitational lensing by galaxies can provide a clean and accurate measurement of gamma, free of such ambiguities. HST images of lensed non-AGN galaxies provide hundreds of resolution elements, each a constraint on the mass profile. Such lenses are exceedingly rare, but we have recently discovered new systems. We propose deep ACS-HRC observations of 3 systems to measure gamma in each, accurate to 0.15 {95% confidence} and to obtain an indication of its variation between galaxies. To establish the required number of orbits we have undertaken an end-to-end simulation of the problem, creating and analysing synthetic ACS images. Additionally the semi-linear method simultaneously reconstructs the pixelised source surface brightness distribution. Our simulations demonstrate that the fine sampling and small pixel scattering of the HRC, resolves the morphology of the sources with exquisite detail.

ACS/WFC/NIC2 10496

Decelerating and Dustfree: Efficient Dark Energy Studies with Supernovae and Clusters

We propose a novel HST approach to obtain a dramatically more useful “dust free” Type Ia supernovae {SNe Ia} dataset than available with the previous GOODS searches. Moreover, this approach provides a strikingly more efficient search-and-follow-up that is primarily pre- scheduled. The resulting dark energy measurements do not share the major systematic uncertainty at these redshifts, that of the extinction correction with a prior. By targeting massive galaxy clusters at z > 1 we obtain a five-times higher efficiency in detection of Type Ia supernovae in ellipticals, providing a well-understood host galaxy environment. These same deep cluster images then also yield fundamental calibrations required for future weak lensing and Sunyaev-Zel’dovich measurements of dark energy, as well as an entire program of cluster studies. The data will make possible a factor of two improvement on supernova constraints on dark energy time variation, and much larger improvement in systematic uncertainty. They will provide both a cluster dataset and a SN Ia dataset that will be a longstanding scientific resource.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

10424 – GSAcq(2,3,2) failed to RGA control due to step scan limit exceeded on FGS 2

At AOS 252/12:53:02, GSAcq (2,3,2) scheduled at 252/12:46:08-12:53:31, showed failed to RGA control due to scan step limit exceeded on FGS 2. Pre-Acq OBAD #1 unavailable due to LOS, OBAD #2 RSS value 2.30 a-s. Post-Acq OBAD Map RSS value 4389.76 a-s. REAcq (2,3,2)scheduled at 252/14:22:03-14:29:26, showed failed to RGA control due to scan step limit exceeded on FGS 2. Pre-Acq OBAD’s showed RSS values of 4384.49 & 7.57 a-s respectively. At 252/14:14:26, received one ESB 1805, (FHST moving target detected).

10425 – GSAcq (2,1,1) failed due to search radius limit exceeded on FGS 2 @253/1252z

At AOS 253/12:52:00, GSAcq (2,1,1) scheduled 253/12:43:32-12:50:49 has failed due to search radius limit exceeded on FGS 2. A total of six (6) 486 EBS 1805 (FHST moving target detected) messages were received. In addition received 486 ESB a05 (exceeded SRL). Pre-Acq OBAD’s showed the following RSS values 3917.30 & 9.38 a-s.

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                         SCHEDULED      SUCCESSFUL 
FGS GSacq               24                    22 
FGS REacq               19                    18 

OBAD with Maneuver 71 71

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.