Status Report

NASA Hubble Space Telescope Daily Report #4071

By SpaceRef Editor
March 16, 2006
Filed under , , ,
NASA Hubble Space Telescope Daily Report #4071

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science


PERIOD COVERED: UT March 15, 2006 (DOY 074)



ACS CCDs daily monitor

This program consists of a set of basic tests to monitor, the read noise, the development of hot pixels and test for any source of noise in ACS CCD detectors. The files, biases and dark will be used to create reference files for science calibration. This programme will be for the entire lifetime of ACS. Changes from cycle 13:- The default gain for WFC is 2 e-/DN. As before bias frames will be collected for both gain 1 and gain 2. Dark frames are acquired using the default gain {2}. This program cover the period Oct, 2 2005- May, 29-2006. The second half of the program has a different proposal number: 10758.

ACS/WFC 10166

ACS and WFPC2 Stellar Photometry in the Kepler Mission Target Field

We will observe three regions at the Galactic Equator {GE} to determine the number of stars in the magnitude range from 18 to 25 in the target field of the NASA Kepler mission. This mission will search for Earth-size planets orbiting other stars. The field is a twelve by twelve degree square in Cygnus. It abuts the GE. The detection technique is to search photometrically for planetary transits. Faint eclipsing binaries that are not spatially resolved from the target star by Kepler may cause confusion, leading to false positive detections. The HST is uniquely capable of determining the potential magnitude of the issue in the region of the GE, where stellar densities are extremely high.

ACS/WFC 10496

Decelerating and Dustfree: Efficient Dark Energy Studies with Supernovae and Clusters

We propose a novel HST approach to obtain a dramatically more useful “dust free” Type Ia supernovae {SNe Ia} dataset than available with the previous GOODS searches. Moreover, this approach provides a strikingly more efficient search-and-follow-up that is primarily pre- scheduled. The resulting dark energy measurements do not share the major systematic uncertainty at these redshifts, that of the extinction correction with a prior. By targeting massive galaxy clusters at z > 1 we obtain a five-times higher efficiency in detection of Type Ia supernovae in ellipticals, providing a well-understood host galaxy environment. These same deep cluster images then also yield fundamental calibrations required for future weak lensing and Sunyaev-Zel’dovich measurements of dark energy, as well as an entire program of cluster studies. The data will make possible a factor of two improvement on supernova constraints on dark energy time variation, and much larger improvement in systematic uncertainty. They will provide both a cluster dataset and a SN Ia dataset that will be a longstanding scientific resource.

ACS/WFC 10587

Measuring the Mass Dependence of Early-Type Galaxy Structure

We propose two-color ACS-WFC Snapshot observations of a sample of 118 candidate early- type gravitational lens galaxies. Our lens-candidate sample is selected to yield {in combination with earlier results} an approximately uniform final distribution of 40 early-type strong lenses across a wide range of masses, with velocity dispersions {a dynamical proxy for mass} ranging from 125 to 300 km/s. The proposed program will deliver the first significant sample of low-mass gravitational lenses. All of our candidates have known lens and source redshifts from Sloan Digital Sky Survey data, and all are bright enough to permit detailed photometric and stellar- dynamical observation. We will constrain the luminous and dark-matter mass profiles of confirmed lenses using lensed-image geometry and lens-galaxy structural/photometric measurements from HST imaging in combination with dynamical measurements from spatially resolved ground-based follow-up spectroscopy. Hence we will determine, in unprecedented detail, the dependence of early-type galaxy mass structure and mass-to-light ratio upon galaxy mass. These results will allow us to directly test theoretical predictions for halo concentration and star-formation efficiency as a function of mass and for the existence of a cuspy inner dark- matter component, and will illuminate the structural explanation behind the fundamental plane of early-type galaxies. The lens-candidate selection and confirmation strategy that we propose has been proven successful for high-mass galaxies by our Cycle 13 Snapshot program {10174}. The program that we propose here will produce a complementary and unprecedented lens sample spanning a wide range of lens-galaxy masses.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration – CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

NICS3 10754

Spectrophotometric Standards for Cross-Observatory Calibration

This program will obtain NICMOS spectrophotometry of four main sequence A stars and four K giants, each selected from the Spitzer IRAC photometric calibration target and/or candidate calibration target lists. These observations will supplement existing HST observations of DA white dwarfs and solar analogs, and will provide a broad base of stellar types for spectrophotometric cross calibration of HST, Spitzer, and eventually JWST. The targets are chosen to be faint enough for unsaturated observations with JWST NIRSPEC, yet still bright enough for high signal to noise in relatively short observations with HST+NICMOS and with Spitzer+IRAC.

WFPC2 10744

WFPC2 Cycle 14 Decontaminations and Associated Observations

This proposal is for the WFPC2 decons. Also included are instrument monitors tied to decons: photometric stability check, focus monitor, pre- and post-decon internals {bias, intflats, kspots, & darks}, UV throughput check, VISFLAT sweep, and internal UV flat check.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: 10171 – GSAcq(1,2,2) failed to RGA control with (QF1STOPF) on FGS-1 @ 074/2037z

At acquisition of signal 074/20:45:15, the GSAcq(1,2,2) scheduled at 074/20:37:31 -20:45:08 showed the spacecraft in RGA control due to (QF1STOPF) indication flag on FGS-1. Pre-acquisition OBAD2 at 074/20:33:01 had total (RSS) correction attitude value of 1.67 arcseconds. Target REacq(1,2,2) of 074/21:59:15 using the same GUIDE STAR ID also failed to RGA control. Pre-acquisition OBADs were successful



                         SCHEDULED      SUCCESSFUL      FAILURE TIMES
FGS GSacq               06                     05                074/2037z 
(HSTAR 10171)
FGS REacq               09                     08                074/2159z 
(HSTAR 10171)
OBAD with Maneuver  26                     26


SpaceRef staff editor.