Status Report

NASA Hubble Space Telescope Daily Report #4062

By SpaceRef Editor
March 4, 2006
Filed under , ,
NASA Hubble Space Telescope Daily Report #4062

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT         #4062

PERIOD COVERED: UT March 02, 2006 (DOY 061)


ACS/HRC 10525

Characterizing the Near-UV Environment of M Dwarfs: Implications for Extrasolar Planetary Searches and Astrobiology

We propose SNAP observations with the ACS HRC PR200L prism, designed to measure the near ultraviolet emission in a sample of 107 nearby M dwarfs. The sample spans the mass range from 0.1 – 0.6 solar masses {temperature range 2200K – 4000K} where the UV energy distributions vary widely between active and inactive stars. The strength and distribution of this UV emission can have critical consequences for the atmospheres of attendant planets. Our proposed observations will provide desperately needed constraints on models of the habitability zone and the atmospheres of possible terrestrial planets orbiting M dwarf hosts, and will be used to sharpen TPF target selection. In addition, the NUV data will be used in conjunction with existing optical, FUV and X-ray data to constrain a new generation of M dwarf atmospheric models, and to explore unanswered questions regarding the dynamo generation and magnetic heating in these low-mass stars.

ACS/HRC 10774

Confirming the Discovery of Two New Satellites of Pluto

We detected two new objects ~2 arcsec from Pluto during our recent deep search for companions using the ACS / WFC mode {HST GO program 10427}. Either these objects are newly discovered satellites of Pluto, or they are previously undiscovered Plutino KBOs that happened to be located along the line-of-sight to Pluto. The ramifications are enormous for our understanding of the origin and evolution of the Pluto-Charon system, and for our understanding of KBO satellite formation in general, if these new objects are satellites of Pluto. Thus, we request two orbits of HST observing time as soon as possible, to confirm that these newly discovered objects are truly satellites of Pluto.


CCD Stability Monitor

This program will verify that the low frequency flat fielding, the photometry, and the geometric distortion are stable in time and across the field of view of the CCD detectors. A moderately crowded stellar field in the cluster 47 Tuc is observed every three months with the HRC {at the cluster core} and WFC {6′ West of the cluster core} using the full suite of broad and narrow band imaging filters. The positions and magnitudes of objects will be used to monitor local and large scale variations in the plate scale and the sensitivity of the detectors and to derive an independent measure of the detector CTE. An additional orbit is required to compare WFC observations taken at gain 1 with those taken at the new default gain 2.

ACS/WFC 10475

An ACS H-alpha Survey of the Carina Nebula

We propose an H-alpha ACS imaging survey covering 540 square arcminutes of the Carina Nebula, including an unbiased survey of the bright core, and several prominent dust pillars in the rich southern region of the nebula. Carina provides an important link between well-studied nearby H II regions like Orion, and more distant mini-starbusts like 30 Doradus. CVZ orbits will allow extremely efficient use of HST to map a large area of this complex and important region — more than 95 percent of the proposed survey will be observed by HST for the first time. This survey will provide a complete census of microjets, proplyds, and silhouette disks with diameters as small as 200 AU, enough to spatially resolve disks like those in Orion, and will provide the first catalog of outflows {jets} from embedded low-mass stars, thin filamentary shocks, and wind-wind collisions in Carina. An accurate census of these phenomena is needed to characterize the star formation activity and gas dynamics as a function of position in the nebula, and to determine if models for protoplanetary disk evaporation from Orion are applicable in more extreme regions. Our previous ground-based optical and IR surveys have already revealed dozens of candidates for this type of activity — but this is just the tip of the iceberg. Our proposed HST/ACS survey promises to be a bonanza for understanding ongoing low-mass star formation influenced by extremely high-mass stars.

ACS/WFC 10515

The Unique Star Cluster System of M85

Even with its long history as one of the pillars of modern astronomy, the study of star clusters has continued to reveal new and surprising things. Over the past decade, numerous programs with HST have shown that extragalactic star clusters powerfully probe the processes of galactic formation, evolution, and destruction. The diversity of star cluster systems is a testament to the rich variation in galaxy properties. During the course of the ACS Virgo Cluster Survey, we have discovered that the early-type galaxy M85 has a system of star clusters unlike any other galaxy studied to date. Hundreds of star clusters in M85 are fainter and more extended than typical globular clusters, and have no local analog. We propose deep optical- infrared imaging with ACS and NICMOS to obtain ages, metallicities, luminosities, and sizes of unprecedented precision to characterize these new star clusters and unravel the evolutionary state of M85 that gave rise to them.

ACS/WFC 10543

Microlensing in M87 and the Virgo Cluster

Resolving the nature of dark matter is an urgent problem. The results of the MACHO survey of the Milky Way dark halo toward the LMC indicate that a significant fraction of the halo consists of stellar mass objects. The VATT/Columbia survey of M31 finds a similar lens fraction in the M31 dark halo. We propose a series of observations with ACS that will provide the most thorough search for microlensing toward M87, the central elliptical galaxy of the Virgo cluster. This program is optimized for lenses in the mass range from 0.01 to 1.0 solar masses. By comparing with archival data, we can detect lenses as massive as 100 solar masses, such as the remnants of the first stars. These observations will have at least 15 times more sensitivity to microlensing than any previous survey, e.g. using WFPC2. This is due to the factor of 2 larger area, factor of more than 4 more sensitivity in the I-band, superior pixel scale and longer baseline of observations. Based on the halo microlensing results in the Milky Way and M31, we might expect that galaxy collisions and stripping would populate the overall cluster halo with a large number of stellar mass objects. This program would determine definitively if such objects compose the cluster dark matter at the level seen in the Milky Way. A negative result would indicate that such objects do not populate the intracluster medium, and may indicate that galaxy harassment is not as vigorous as expected. We can measure the level of events due to the M87 halo: this would be the best exploration to date of such a lens population in an elliptical galaxy. Star-star lensing should also be detectable. About 20 erupting classical novae will be seen, allowing to determine the definitive nova rate for this giant elliptical galaxy. We will determine if our recent HST detection of an M87 globular cluster nova was a fluke, or indicative of a 100x higher rate of incidence of cataclysmic variables and nova eruptions in globulars than previously believed. We will examine the populations of variable stars, and will be able to cleanly separate them from microlensing.

ACS/WFC 10775

An ACS Survey of Galactic Globular Clusters

We propose to conduct an ACS/WFC imaging survey of Galactic globular clusters. We will construct the most extensive and deepest set of photometry and astrometry to-date for these systems reaching a main sequence mass of ~0.2 solar mass with S/N >= 10. We will combine these data with archival WFPC2 and STIS images to determine proper motions for the stars in our fields. The resultant cleaned cluster CMDs will allow us to study a variety of scientific questions. These include [but are not limited to] 1} the determination of cluster ages and distances 2} the construction of main sequence mass functions and the issue of mass segregation 3} the internal motions and dynamical evolution of globular clusters, and 4} absolute cluster motions, orbits, and the Milky Way gravitational potential. We anticipate that the unique resource provided by the proposed treasury archive will play a central role in the field of globular cluster studies for decades, with a stature comparable to that of the Hubble Deep Field for high redshift studies.

ACS/WFC/NIC2 10566

Star Formation in the LMC – The complete IMF of a Stellar Association

We propose to use the large improvement in sensitivity and wide-field resolution provided by ACS to obtain, for the first time, the complete Initial Mass Function {IMF} down to sub-solar masses of a very young stellar association in the Large Magellanic Cloud {LMC}. Such an IMF will serve as a reference IMF typical of low-metallicity regions. We want to obtain VI deep {V ~ 26.5 mag} WFC photometry of the association LH 95 and a nearby background field pointing. Special care will be taken to treat all the complications which arise in the reduction of data for the purpose of calculating the IMF of a young association of stars. Our object of study has been chosen because it is one of the associations, which provide the best combination of spatial resolution, crowding, low extinction, nebular contamination, and background confusion in comparison to others in the Local Group. The region also has the advantage of being very young with indications that it is still forming stars, thus allowing us to search for sub-solar pre-main- sequence stars, as well as for an embedded proto-cluster.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration – CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)


10157 – GSACQ(2,1,2) fine lock backup, scan step limit exceeded on FGS 2 @ 061/15:52:54z

Upon acquisition of signal at 061/15:52:54 HST was in fine lock on FGS 1 only. GSACQ(2,1,2) at 061/15:32:41 ended in fine lock backup on FGS 1 due to scan step limit exceeded on FGS 2.


                          SCHEDULED      SUCCESSFUL 
 FGS GSacq                09                     09 
 FGS REacq                02                      02 
 OBAD with Maneuver   22                      22 


SpaceRef staff editor.