Status Report

NASA Hubble Space Telescope Daily Report #4050

By SpaceRef Editor
February 15, 2006
Filed under , ,
NASA Hubble Space Telescope Daily Report #4050

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science


PERIOD COVERED: UT February 14, 2006 (DOY 045)


ACS/HRC 10508

Orbits, Masses, and Densities of Three Transneptunian Binaries

The subset of transneptunian objects {TNOs} having natural satellites offers unique opportunities for physical studies of these distant relics from the outer parts of the protoplanetary nebula. HST/ACS is ideally suited to determining orbits of TNO satellites, resulting in the system masses. In conjunction with thermal emission observations by Spitzer, which provides sizes, we can determine the densities of TNOs. Densities offer a powerful window into their bulk compositions and interior structures.

ACS/HRC 10545

Icy planetoids of the outer solar system

Early HST studies of satellites of Kuiper belt object focussed on the 50-200 km objects that were the largest known at the time. In the past 3 years we have discovered a population of much more rare and much larger {500-2000+ km} icy planetoids in the Kuiper belt. These objects are the largest and brightest known in the Kuiper belt and, in the era when we now know of more than 1000 Kuiper belt objects, these few planetoids are likely to be the focus of much of the research on physical properties of the outer solar system for years to come. We are currently engaged in an intensive program involving Spitzer, Keck, and other telescopes to study the physical and dynamical properties of this new population. HST is uniquely capable of addressing one parameter fundamental to completing the physical picture of these planetoids: the existence and size of any satellites. The detection and characterization of satellites to these large planetoids would allow us to address unique issues critical to the formation and evolution of the outer solar system, including the measurement of densities, internal properties, sizes and shapes of these objects, the study of binary formation as a function of primary size, and the context of the Pluto-Charon binary. For these bright objects, a satellite search takes less than a full orbit, allowing the opportunity for a new project on UV spectroscopy of the planetoids to piggyback at no added time cost. This poorly explored spectral range has the potential to show unique signatures of trapped gasses, cosmochemically important ices, and complex organic materials.

ACS/WFC 10496

Decelerating and Dustfree: Efficient Dark Energy Studies with Supernovae and Clusters

We propose a novel HST approach to obtain a dramatically more useful “dust free” Type Ia supernovae {SNe Ia} dataset than available with the previous GOODS searches. Moreover, this approach provides a strikingly more efficient search-and-follow-up that is primarily pre- scheduled. The resulting dark energy measurements do not share the major systematic uncertainty at these redshifts, that of the extinction correction with a prior. By targeting massive galaxy clusters at z > 1 we obtain a five-times higher efficiency in detection of Type Ia supernovae in ellipticals, providing a well-understood host galaxy environment. These same deep cluster images then also yield fundamental calibrations required for future weak lensing and Sunyaev-Zel’dovich measurements of dark energy, as well as an entire program of cluster studies. The data will make possible a factor of two improvement on supernova constraints on dark energy time variation, and much larger improvement in systematic uncertainty. They will provide both a cluster dataset and a SN Ia dataset that will be a longstanding scientific resource.

ACS/WFC 10543

Microlensing in M87 and the Virgo Cluster

Resolving the nature of dark matter is an urgent problem. The results of the MACHO survey of the Milky Way dark halo toward the LMC indicate that a significant fraction of the halo consists of stellar mass objects. The VATT/Columbia survey of M31 finds a similar lens fraction in the M31 dark halo. We propose a series of observations with ACS that will provide the most thorough search for microlensing toward M87, the central elliptical galaxy of the Virgo cluster. This program is optimized for lenses in the mass range from 0.01 to 1.0 solar masses. By comparing with archival data, we can detect lenses as massive as 100 solar masses, such as the remnants of the first stars. These observations will have at least 15 times more sensitivity to microlensing than any previous survey, e.g. using WFPC2. This is due to the factor of 2 larger area, factor of more than 4 more sensitivity in the I-band, superior pixel scale and longer baseline of observations. Based on the halo microlensing results in the Milky Way and M31, we might expect that galaxy collisions and stripping would populate the overall cluster halo with a large number of stellar mass objects. This program would determine definitively if such objects compose the cluster dark matter at the level seen in the Milky Way. A negative result would indicate that such objects do not populate the intracluster medium, and may indicate that galaxy harassment is not as vigorous as expected. We can measure the level of events due to the M87 halo: this would be the best exploration to date of such a lens population in an elliptical galaxy. Star-star lensing should also be detectable. About 20 erupting classical novae will be seen, allowing to determine the definitive nova rate for this giant elliptical galaxy. We will determine if our recent HST detection of an M87 globular cluster nova was a fluke, or indicative of a 100x higher rate of incidence of cataclysmic variables and nova eruptions in globulars than previously believed. We will examine the populations of variable stars, and will be able to cleanly separate them from microlensing.

ACS/WFC 10592

An ACS Survey of a Complete Sample of Luminous Infrared Galaxies in the Local Universe

At luminosities above 10^11.4 L_sun, the space density of far-infrared selected galaxies exceeds that of optically selected galaxies. These `luminous infrared galaxies’ {LIRGs} are primarily interacting or merging disk galaxies undergoing enhanced star formation and Active Galactic Nuclei {AGN} activity, possibly triggered as the objects transform into massive S0 and elliptical merger remnants. We propose ACS/WFC imaging of a complete sample of 88 L_IR > 10^11.4 L_sun luminous infrared galaxies in the IRAS Revised Bright Galaxy Sample {RBGS: i.e., 60 micron flux density > 5.24 Jy}. This sample is ideal not only in its completeness and sample size, but also in the proximity and brightness of the galaxies. The superb sensitivity, resolution, and field of view of ACS/WFC on HST enables a unique opportunity to study the detailed structure of galaxies that sample all stages of the merger process. Imaging will be done with the F439W and F814W filters {B and I-band} to examine as a function of both luminosity and merger state {i} the evidence at optical wavelengths of star formation and AGN activity and the manner in which instabilities {bars and bridges} in the galaxies may funnel material to these active regions, {ii} the relationship between star formation and AGN activity, and {iii} the structural properties {AGN, bulge, and disk components} and fundamental parameters {effective radius and surface brightness} of LIRGs and their similarity with putative evolutionary byproducts {elliptical, S0 and classical AGN host galaxies}. This HST survey will also bridge the wavelength gap between a Spitzer imaging survey {covering seven bands in the 3.6-160 micron range} and a GALEX UV imaging survey of these galaxies, but will resolve complexes of star clusters and multiple nuclei at resolutions well beyond the capabilities of either Spitzer or GALEX. The combined datasets will result in the most comprehensive multiwavelength study of interacting and merging galaxies to date.


Probing Evolution And Reionization Spectroscopically {PEARS}

While imaging with HST has gone deep enough to probe the highest redshifts, e.g. the GOODS survey and the Ultra Deep Field, spectroscopic identifications have not kept up. We propose an ACS grism survey to get slitless spectra of all sources in a wide survey region {8 ACS fields} up to z =27.0 magnitude, and an ultradeep field in the HUDF reaching sources up to z =28 magnitude. The PEARS survey will: {1} Find and spectrocopically confirm all galaxies between z=4-7. {2} Probe the reionization epoch by robustly determining the luminosity function of galaxies and low luminosity AGNs at z = 4 – 6. With known redshifts, we can get a local measure of star formation and ionization rate in case reionization is inhomogeneous. {3} Study galaxy formation and evolution by finding galaxies in a contiguous redshift range between 4 < z < 7, and black hole evolution through a census of low-luminosity AGNs. {4} Get a robust census of galaxies with old stellar populations at 1 < z < 2.5, invaluable for checking consistency with heirarchical models of galaxy formation. Fitting these galaxies' spectra will yield age and metallicity estimates. {5} Study star-formation and galaxy assembly at its peak at 1< z < 2 by identifying emission lines in star-forming galaxies, old populations showing the 4000A break, and any combination of the two. {6} Constrain faint white dwarfs in the Galactic halo and thus measure their contribution to the dark matter halo. {7} Derive spectro-photometric redshifts by using the grism spectra along with broadband data. This will be the deepest unbiased spectroscopy yet, and will enhance the value of the multiwavelength data in UDF and the GOODS fields to the astronomical community. To this end we will deliver reduced spectra to the HST archives.

NIC1/NIC2/NIC3 8792

NICMOS Post-SAA calibration – CR Persistence Part 3

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

WFPC2 10745


This calibration proposal is the Cycle 14 routine internal monitor for WFPC2, to be run weekly to monitor the health of the cameras. A variety of internal exposures are obtained in order to provide a monitor of the integrity of the CCD camera electronics in both bays {both gain 7 and gain 15 — to test stability of gains and bias levels}, a test for quantum efficiency in the CCDs, and a monitor for possible buildup of contaminants on the CCD windows. These also provide raw data for generating annual super-bias reference files for the calibration pipeline.


Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)


10131 – GSAcq(1,3,1) returned to default @ 041/11:01:05z

GSAc1(1,3,1) scheduled for 2006/041 11:01:05 returned to default after initially achieving FL-DV on FGS1 and FGS3.

10132 – Target REacq(1,2,2) failed to RGA Control (M2G) at AOS due to search radius limit exceeded on FGS-2 @ 46/00:03:28z

The Target REacq(1,2,2) scheduled at 045/23:57:27 – 046/00:05:32 during ZOE period failed to (M2G), with indication flag (SRLEX) on FGS-2 at AOS. Also 486 ESB Dump (ROP DF-18A) at 046/01:01:53 showed ESB message “a05” search radius limit exceeded was received at 046/00:03:28.



                          SCHEDULED      SUCCESSFUL      FAILURE TIMES
FGS GSacq                07                     07
REacq                08                     07                 046/00:03:28z
OBAD with Maneuver   30                     30


SpaceRef staff editor.