Status Report

NASA Hubble Space Telescope Daily Report #3984

By SpaceRef Editor
November 9, 2005
Filed under , ,
NASA Hubble Space Telescope Daily Report #3984
http://images.spaceref.com/news/hubble.3.jpg

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT # 3984

PERIOD COVERED: UT November 8, 2005 (DOY 312)

OBSERVATIONS SCHEDULED

ACS/HRC 10512

Search for Binaries Among Faint Jupiter Trojan Asteroids

We propose an ambitious SNAPSHOT program to survey faint Jupiter Trojan asteroids for binary companions. We target 150 objects, with the expectation of acquiring data on about 50%. These objects span Vmag = 17.5-19.5, a range inaccessible with ground-based adaptive optics. We now have a significant sample from our survey of brighter Trojans to suggest that the binary fraction is similar to that which we find among brighter main-belt asteroids, roughly 2%. However, our observations suggest a higher binary fraction for smaller main-belt asteroids, probably the result of a different formation mechanism {evident also from the physical characteristics of the binaries}. Because the collision environment among the Trojans is similar to that of the Main Belt, while the composition is likely to be very different, sampling the binary fraction among the fainter Trojans should help us understand the collisional and binary formation mechanisms at work in various populations, including the Kuiper Belt, and help us evaluate theories for the origin of the Trojans. Calibration of and constraints on models of binary production and collisional evolution can only be done using these large-scale, real-life physical systems that we are beginning now to find and utilize.

ACS/WFC 10523

The Halo Shape and Metallicity of Massive Spiral Galaxies

We propose to resolve the stellar populations of the halos of seven nearby, massive disk galaxies using a SNAP survey with WFC/ACS. These observations will provide star counts and color-magnitude diagrams 2-3 magnitudes below the tip of the Red Giant Branch along the two principal axes and one intermediate axis of each galaxy. We will measure the metallicity distribution functions and stellar density profiles from star counts down to very low average surface brightnesses, equivalent to ~31 V-mag per square arcsec. This proposal will create a unique sampling of galaxy halo properties, as our targets cover a range in galaxy mass, luminosity, inclination, and morphology. As function of these galaxy properties this survey will provide:- the first systematic measurement of radial light profiles and axial ratios of the diffuse stellar halos and outer disks of spiral galaxies- a comprehensive analysis of halo metallicity distributions as function of galaxy type and position within the galaxy- an unprecedented study of the stellar metallicity and age distribution in the outer disk regions where the disk truncations occur- the first comparative study of globular clusters and their field stellar populations We will use these fossil records of the galaxy assembly process to test halo formation models within the hierarchical galaxy formation scheme.

ACS/WFC 10526

Dynamics of the Polarization Structure of the Crab Nebula

The Crab Nebula is not a free expansion SNR. Rather, it is a pulsar wind nebula expanding from the inside out into a larger remnant of freely expanding ejecta. At the heart of this object is the Crab Pulsar and the region where the pulsar’s highly nonisotropic wind interacts with the larger synchtron nebula. HST and Chandra monitoring has shown this to be one of the most intricately structured and highly dynamical objects ever observed. In Cycle 12 we demonstrated our ability to use the polarization capabilities of the ACS to isolate physically discrete features within the Crab Synchrotron Nebula and accurately measure their polarization characteristics. These data provide a unique look at the physical structure in the heart of the Crab, adding a new dimension to past observations. Polarization provides extensive information about field geometries, the degree of disorder in the field, and particle pitch angle distributions. But one image of the Crab is like a single image of waves at the beach. It necessarily misses the point. In the Crab, the name of the game is “dynamics”. In this proposal we request time to monitor changes in the polarization structure of the Crab. This program will allow us to follow the changing polarization of features including relativistically moving wisps in the Crab Nebula. This is the only place in the sky where a dynamic relativistic plasma can be observed in sufficient detail to make such measurements possible, and the HST/ACS is the only instrument that we are likely to see in our careers capable of making the measurement. These observations will be an important addition to the already rich observational legacy of HST for what is arguably the most important single object in astrophysics.

ACS/WFC 10586

The Rosetta Stone without a Distance: Hunting for Cepheids in the Primordial Galaxy I Zw 18

The Blue Compact Dwarf galaxy I Zw 18 is one of the most intriguing objects in the Local Universe. It has the lowest nebular metallicity of all known galaxies {Z=1/32 solar}. It has long been regarded as a possible example of a galaxy undergoing its first burst of star formation. However, its real evolutionary state continues to be controversial. The WFPC2 and NICMOS detection of AGB stars by our group and others suggested the presence of an underlying older population. However, deeper ACS observations by Izotov & Thuan {2004} recently failed to detect the signature of RGB stars. This was interpreted as confirmation that I Zw 18 is in fact a galaxy “in formation”, a local analog of primordial galaxies in the distant Universe. This result was widely reported in the international news media. However, an alternative possibility is that I Zw 18 is somewhat further away than previously believed, so that Red Giant Branch stars were too faint to detect. Quoted distances in the literature have ranged from 10 to 20 Mpc. We intend to resolve this controversy by direct determination of the distance to 1 Mpc accuracy using Cepheids. For this we request 12 visits of two orbits each, to execute at carefully planned intervals. We will obtain V and I band ACS/WFC photometry in each visit. The new data will be combined with archival data, but we show that the archival data by themselves are insufficient to achieve our science goals. The distance will allow us to place I Zw 18 into its proper place in the evolutionary sequence of galaxy formation.

ACS/WFC 10618

The Light Echoes around V838 Monocerotis: MHD in 3 Dimensions, Circumstellar Mapping, and Dust

V838 Monocerotis, which burst upon the astronomical scene in early 2002, is a completely unanticipated new object. It underwent a large-amplitude and very luminous outburst, during which its spectrum remained that of an extremely cool supergiant. A rapidly evolving set of light echoes around V838 Mon was discovered soon after the outburst, and quickly became the most spectacular display of the phenomenon ever seen. The light echoes, which were imaged by us with HST during 2002, provide the means to accomplish four unique types of measurements based on continued HST imaging during the event: {1} Study effects of MHD turbulence at high resolution and in 3 dimensions; {2} Construct the first unambiguous and fully 3-D map of a circumstellar dust envelope in the Milky Way; {3} Study dust physics in a unique setting where the spectrum and light curve of the illumination, and the scattering angle, are unambiguously known; and {4} Determine the distance to V838 Mon through two independent direct geometric techniques {polarimetry and angular expansion rates}. Because of the extreme rarity of light echoes, this is almost certainly the only opportunity to achieve such results during the lifetime of HST. We propose a campaign during Cycle 14 of imaging the echoes every 8 days for a total of 6 epochs, in order to fully map a thin slab through the dust shell and achieve the other goals listed above.

FGS 10610

Astrometric Masses of Extrasolar Planets and Brown Dwarfs

We propose observations with HST/FGS to estimate the astrometric elements {perturbation orbit semi-major axis and inclination} of extra-solar planets orbiting six stars. These companions were originally detected by radial velocity techniques. We have demonstrated that FGS astrometry of even a short segment of reflex motion, when combined with extensive radial velocity information, can yield useful inclination information {McArthur et al. 2004}, allowing us to determine companion masses. Extrasolar planet masses assist in two ongoing research frontiers. First, they provide useful boundary conditions for models of planetary formation and evolution of planetary systems. Second, knowing that a star in fact has a plantary mass companion, increases the value of that system to future extrasolar planet observation missions such as SIM PlanetQuest, TPF, and GAIA.

NIC2 10527

Imaging Scattered Light from Debris Disks Discovered by the Spitzer Space Telescope Around 20 Sun-like

We propose to use the high contrast capability of the NICMOS coronagraph to image a sample of newly discovered circumstellar disks associated with sun-like stars. These systems were identified by their strong thermal infrared emission with the Spitzer Space Telescope as part of the Spitzer Legacy Science program titled, “The Formation and Evolution of Planetary Systems {FEPS}.” Modelling of the thermal excess emission in the form of spectral energy distributions alone cannot distinguish between narrowly confined high opacity disks and broadly distributed, low opacity disks. However, our proposed NICMOS observations can, by imaging the light scattered from this material. Even non- detections will place severe constraints on the disk geometry, ruling out models with high optical depth. Unlike previous disk imaging programs, our program contains a well defined sample of solar mass stars covering a range of ages from ~10Myrs to a few Gyrs, allowing us to study the evolution of disks from primordial to debris for the first time. These results will greatly improve our understanding of debris disks around Sun- like stars at stellar ages nearly 10x older than any previous investigation. Thus we will have fit a crucial piece into the puzzle concerning the formation and evolution of our own solar system.

NICMOS 8790

NICMOS Post-SAA calibration – CR Persistence Part 1.

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark.

WFPC2 10745

WFPC2 CYCLE 14 INTERNAL MONITOR

This calibration proposal is the Cycle 14 routine internal monitor for WFPC2, to be run weekly to monitor the health of the cameras. A variety of internal exposures are obtained in order to provide a monitor of the integrity of the CCD camera electronics in both bays {both gain 7 and gain 15 — to test stability of gains and bias levels}, a test for quantum efficiency in the CCDs, and a monitor for possible buildup of contaminants on the CCD windows. These also provide raw data for generating annual super-bias reference files for the calibration pipeline.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

                            SCHEDULED      SUCCESSFUL
FGS GSacq                 07                      07
FGS REacq                 07                      07
OBAD with Maneuver    26                      26

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.