NASA Hubble Space Telescope Daily Report #3975

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science
DAILY REPORT # 3975
PERIOD COVERED: UT October 26, 2005 (DOY 299)
OBSERVATIONS SCHEDULED
ACS/HRC 10545
Icy planetoids of the outer solar system
Early HST studies of satellites of Kuiper belt object focussed on the 50-200 km objects that were the largest known at the time. In the past 3 years we have discovered a population of much more rare and much larger {500-2000+ km} icy planetoids in the Kuiper belt. These objects are the largest and brightest known in the Kuiper belt and, in the era when we now know of more than 1000 Kuiper belt objects, these few planetoids are likely to be the focus of much of the research on physical properties of the outer solar system for years to come. We are currently engaged in an intensive program involving Spitzer, Keck, and other telescopes to study the physical and dynamical properties of this new population. HST is uniquely capable of addressing one parameter fundamental to completing the physical picture of these planetoids: the existence and size of any satellites. The detection and characterization of satellites to these large planetoids would allow us to address unique issues critical to the formation and evolution of the outer solar system, including the measurement of densities, internal properties, sizes and shapes of these objects, the study of binary formation as a function of primary size, and the context of the Pluto-Charon binary. For these bright objects, a satellite search takes less than a full orbit, allowing the opportunity for a new project on UV spectroscopy of the planetoids to piggyback at no added time cost. This poorly explored spectral range has the potential to show unique signatures of trapped gasses, cosmochemically important ices, and complex organic materials.
ACS/HRC 10731
UV Narrow Band Red Leak
Red leaks check for UV and narrowband filters.
ACS/HRC/WFC 10729
ACS CCDs daily monitor
This program consists of a set of basic tests to monitor, the read noise, the development of hot pixels and test for any source of noise in ACS CCD detectors. The files, biases and dark will be used to create reference files for science calibration. This programme will be for the entire lifetime of ACS. Changes from cycle 13:- The default gain for WFC is 2 e-/DN. As before bias frames will be collected for both gain 1 and gain 2. Dark frames are acquired using the default gain {2}. This program cover the period Oct, 2 2005- May, 29-2006. The second half of the program has a different proposal number: 10758.
ACS/SBC 10489
Imaging Extended UV H2 Emission Around T Tauri
The interactions between the circumstellar disk, newly-forming star, and bipolar jet outflows play a central role in the process of star formation. These interactions control how disks evolve and dissipate, and, thereby, control the process of planetary system formation. We shall image the UV molecular hydrogen {H2} emission around the pre-main-sequence binary star T Tauri using the ACS SBC {solar blind channel} MAMA detector, thus determining the spatial properties of the H2 emitting regions, and deriving important detailed observational information on the disk-star-jet interaction on scales of order 5 AU. These images will reveal the degree of collimation and opening angles of the innermost parts of the high velocity jets, the shock structure within the jet outflows, the size and morphology of the circumstellar disks, both in emission and in silhouette, and the conditions inside the polar cavities swept clear by Herbig-Haro flows. Fluorescent H2 emission lines dominate the UV spectrum of T Tau. Long-slit {1-D} STIS UV spectra of T Tau show H2 emission with a complex spatial structure extending many arcseconds from the star and the presence of significant shock structures. The H2 must be warm {approx. 2000 K} for the fluorescence to operate. The molecular emission originates in shocks and, perhaps, also from the surfaces of the inner regions of accretion disks.
ACS/SBC 10506
Coordinated observations of Saturn’s auroral dynamic morphology and Cassini plasma measurements
Planetary FUV aurora is the most spectacular signature of the electrodynamical coupling between the solar wind, the planet’s magnetic field, and its atmosphere. Saturn’s magnetosphere has similarities both with the Earth’s magnetosphere, which is ‘open’ to solar wind interaction and Jupiter’s relatively ‘closed’ case with its large internal sources of plasma. HST observations of Saturn’s aurora have shown a much more complex and dynamic morphology than anticipated: a frequent ‘spiral’ structure, a changing size of the oval in response to variations of the solar wind dynamics pressure, and large brightness changes in a few ten of minutes following compression of the magnetosphere by the solar wind. In addition, the global morphology and some spots move at 70% of the planetary co-rotation, while some other features appear nearly fixed in local time. Recently, ideas have emerged to account for Saturn’s aurora specificities, although many aspects are still not understood due to the paucity of observational data. Electric current models suggest that the main oval is located at the limit between closed and open magnetic field lines, near the magnetopause. The availability of Cassini in Saturn’s magnetic environment now offers a unique opportunity for collaborative science. We thus propose to test the relationship between the aurora and conditions at Saturn’s magnetopause {MP} boundary. We plan to image the FUV aurora with ACS at times of inbound Cassini crossing of the MP from the upstream solar wind/magnetosheath region into the middle magnetosphere during an inbound segment of a Cassini’s orbit. FUV images will also reveal whether the main oval changes its size over the interval, possibly indicating evidence for changes in the amount of open flux in the system. These HST images of the aurora simultaneous with in situ measurements of the plasma characteristics and electrodynamics inside the magnetosphere are critical to obtain key observational tests and constraints to future ideas and models of Saturn’s auroral precipitation and magnetospheric processes involved.
ACS/SBC 10739
Internal Flat Field Stability
The stability of the CCD flat fields will be monitored using the calibration lamps and a sub-sample of the filter set. For the SBC imaging filters, differences in the low-frequency flat field structure with wavelength will be assessed. New high signal P-flats will be obtained for the SBC prisms.
ACS/WFC 10491
A Snapshot Survey of the most massive clusters of galaxies
We propose a snapshot survey of a sample of 124 high X-ray luminosity clusters in the redshift range 0.3-0.7. Similarly luminous clusters at these redshifts frequently exhibit strong gravitational lensing. The proposed observations will provide important constraints on the nature of the cluster mass distributions and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. We acknowledge the broad community interest in this sample and waive our data rights for these observations.
ACS/WFC 10496
Decelerating and Dustfree: Efficient Dark Energy Studies with Supernovae and Clusters
We propose a novel HST approach to obtain a dramatically more useful “dust free” Type Ia supernovae {SNe Ia} dataset than available with the previous GOODS searches. Moreover, this approach provides a strikingly more efficient search-and-follow-up that is primarily pre- scheduled. The resulting dark energy measurements do not share the major systematic uncertainty at these redshifts, that of the extinction correction with a prior. By targeting massive galaxy clusters at z > 1 we obtain a five-times higher efficiency in detection of Type Ia supernovae in ellipticals, providing a well-understood host galaxy environment. These same deep cluster images then also yield fundamental calibrations required for future weak lensing and Sunyaev-Zel’dovich measurements of dark energy, as well as an entire program of cluster studies. The data will make possible a factor of two improvement on supernova constraints on dark energy time variation, and much larger improvement in systematic uncertainty. They will provide both a cluster dataset and a SN Ia dataset that will be a longstanding scientific resource.
ACS/WFC 10523
The Halo Shape and Metallicity of Massive Spiral Galaxies
We propose to resolve the stellar populations of the halos of seven nearby, massive disk galaxies using a SNAP survey with WFC/ACS. These observations will provide star counts and color-magnitude diagrams 2-3 magnitudes below the tip of the Red Giant Branch along the two principal axes and one intermediate axis of each galaxy. We will measure the metallicity distribution functions and stellar density profiles from star counts down to very low average surface brightnesses, equivalent to ~31 V-mag per square arcsec. This proposal will create a unique sampling of galaxy halo properties, as our targets cover a range in galaxy mass, luminosity, inclination, and morphology. As function of these galaxy properties this survey will provide:- the first systematic measurement of radial light profiles and axial ratios of the diffuse stellar halos and outer disks of spiral galaxies- a comprehensive analysis of halo metallicity distributions as function of galaxy type and position within the galaxy- an unprecedented study of the stellar metallicity and age distribution in the outer disk regions where the disk truncations occur- the first comparative study of globular clusters and their field stellar populations We will use these fossil records of the galaxy assembly process to test halo formation models within the hierarchical galaxy formation scheme.
ACS/WFC/NIC3 10632
Searching for galaxies at z>6.5 in the Hubble Ultra Deep Field
We propose to obtain deep ACS {F606W, F775W, F850LP} imaging in the area of the original Hubble Ultra Deep Field NICMOS parallel fields and – through simultaneous parallel observations – deep NICMOS {F110W, F160W} imaging of the ACS UDF area. Matching the extreme imaging depth in the optical and near-IR bands will result in seven fields with sufficiently sensitive multiband data to detect the expected typical galaxies at z=7 and 8. Presently no such a field exist. Our combined optical and near-IR ultradeep fields will be in three areas separated by about 20 comoving Mpc at z=7. This will allow us to give a first assessment of the degree of cosmic variance. If reionization is a process extending over a large redshift interval and the luminosity function doesn’t evolve strongly beyond z=6, these data will allow us to identify of the order of a dozen galaxies at 6.5
FGS 10610
Astrometric Masses of Extrasolar Planets and Brown Dwarfs
We propose observations with HST/FGS to estimate the astrometric elements {perturbation orbit semi-major axis and inclination} of extra-solar planets orbiting six stars. These companions were originally detected by radial velocity techniques. We have demonstrated that FGS astrometry of even a short segment of reflex motion, when combined with extensive radial velocity information, can yield useful inclination information {McArthur et al. 2004}, allowing us to determine companion masses. Extrasolar planet masses assist in two ongoing research frontiers. First, they provide useful boundary conditions for models of planetary formation and evolution of planetary systems. Second, knowing that a star in fact has a plantary mass companion, increases the value of that system to future extrasolar planet observation missions such as SIM PlanetQuest, TPF, and GAIA.
FGS 10757
Monitoring FGS1r’s Interferometric Response as a Function of Spectral Color
This proposal obtains reference point source Transfer Functions {S-Curves} for FGS1r through the F583W filter and the F5ND attenuator at the center position of the FGS1r FOV for a variety of stars of different spectral types. These Transfer Functions are needed to support the analysis of GO science data for the study of close and wide binary star systems and for determining the angular size and shape of extended sources. This proposal observes stars that have been observed in previous cycles to monitor the long term evolution of the FGS1r S-curves. This proposal also {1} monitors the FGS1r Lateral Color response {using stars Latcol-A and Latcol-B}, {2} calibrates the “Pos/Trans” bias of a star’s position as determined from Transfer mode and Position mode observations, and {3} calibrates the shift of a star’s centroid when observed with F5ND relative to that when observed with F583W.
NIC1/NIC2/NIC3 8793
NICMOS Post-SAA calibration – CR Persistence Part 4
A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS: (None)
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL FGS Gsacq 8 8 FGS Reacq 6 6 OBAD with Maneuver 29 29
SIGNIFICANT EVENTS: (None)